Polymeric Biomaterials for Medical Implants and Devices

In this review article, we focus on the various types of materials used in biomedical implantable devices, including the polymeric materials used as substrates and for the packaging of such devices. Polymeric materials are used because of the ease of fabrication, flexibility, and their biocompatible nature as well as their wide range of mechanical, electrical, chemical, and thermal behaviors when combined with different materials as composites. Biocompatible and biostable polymers are extensively used to package implanted devices, with the main criteria that include gas permeability and water permeability of the packaging polymer to protect the electronic circuit of the device from moisture and ions inside the human body. Polymeric materials must also have considerable tensile strength and should be able to contain the device over the envisioned lifetime of the implant. For substrates, structural properties and, at times, electrical properties would be of greater concern. Section 1 gives an introduction of some medical devices and implants along with the material requirements and properties needed. Different synthetic polymeric materials such as polyvinylidene fluoride, polyethylene, polypropylene, polydimethylsiloxane, parylene, polyamide, polytetrafluoroethylene, poly(methyl methacrylate), polyimide, and polyurethane have been examined, and liquid crystalline polymers and nanocomposites have been evaluated as biomaterials that are suitable for biomedical packaging (section 2). A summary and glimpse of the future trend in this area has also been given (section 3). Materials and information used in this manuscript are adapted from papers published between 2010 and 2015 representing the most updated information available on each material
Publisher
AMER CHEMICAL SOC
Issue Date
2016-04
Language
English
Keywords

LIQUID-CRYSTAL POLYMER; IN-VIVO; SURFACE MODIFICATION; BIOMEDICAL APPLICATIONS; NEURAL INTERFACE; METALLIC STENTS; ELECTRODE ARRAY; KNEE IMPLANTS; BIOCOMPATIBILITY; SCAFFOLDS

Citation

ACS BIOMATERIALS-SCIENCE & ENGINEERING, v.2, no.4, pp.454 - 472

ISSN
2373-9878
DOI
10.1021/acsbiomaterials.5b00429
URI
http://hdl.handle.net/10203/209004
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
  • Hit : 77
  • Download : 0
  • Cited 0 times in thomson ci
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡClick to seewebofscience_button
⊙ Cited 23 items in WoSClick to see citing articles inrecords_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0