A Conceptual Study of a Supercritical CO2-Cooled Micro Modular Reactor

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 255
  • Download : 994
A neutronics conceptual study of a supercritical CO2-cooled micro modular reactor (MMR) has been performed in this work. The suggested MMR is an extremely compact and truck-transportable nuclear reactor. The thermal power of the MMR is 36.2 MWth and it is designed to have a 20-year lifetime without refueling. A salient feature of the MMR is that all the components including the generator are integrated in a small reactor vessel. For a minimal volume and long lifetime of the MMR core, a fast neutron spectrum is utilized in this work. To enhance neutron economy and maximize the fuel volume fraction in the core, a high-density uranium mono-nitride (UN)-N-15 fuel is used in the fast-spectrum MMR. Unlike the conventional supercritical CO2-cooled fast reactors, a replaceable fixed absorber (RFA) is introduced in a unique way to minimize the excess reactivity and the power peaking factor of the core. For a compact core design, the drum-type control absorber is adopted as the primary reactivity control mechanism. In this study, the neutronics analyses and depletions have been performed by using the continuous energy Monte Carlo Serpent code with the evaluated nuclear data file ENDF/B-VII.1 Library. The MMR core is characterized in view of several important safety parameters such as control system worth, fuel temperature coefficient (FTC) and coolant void reactivity (CVR), etc. In addition, a preliminary thermal-hydraulic analysis has also been performed for the hottest channel of the Korea Advanced Institute of Science and Technology (KAIST) MMR.
Publisher
MDPI AG
Issue Date
2015-12
Language
English
Article Type
Article
Keywords

WATER-COOLED SMALL; BRAYTON CYCLE; CO2; DESIGN; SYSTEM; FUEL; FLOW

Citation

ENERGIES, v.8, no.12, pp.13938 - 13952

ISSN
1996-1073
DOI
10.3390/en81212405
URI
http://hdl.handle.net/10203/207407
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
000367531500037.pdf(5.11 MB)Download
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0