A Period2 Phosphoswitch Regulates and Temperature Compensates Circadian Period

Cited 42 time in webofscience Cited 0 time in scopus
  • Hit : 286
  • Download : 0
DC FieldValueLanguage
dc.contributor.authorZhou, Minko
dc.contributor.authorKim, Jae Kyoungko
dc.contributor.authorEng, Gracie Wee Lingko
dc.contributor.authorForger, Daniel B.ko
dc.contributor.authorVirshup, David M.ko
dc.date.accessioned2016-04-22T08:45:15Z-
dc.date.available2016-04-22T08:45:15Z-
dc.date.created2015-11-26-
dc.date.created2015-11-26-
dc.date.created2015-11-26-
dc.date.issued2015-10-
dc.identifier.citationMOLECULAR CELL, v.60, no.1, pp.77 - 88-
dc.identifier.issn1097-2765-
dc.identifier.urihttp://hdl.handle.net/10203/206045-
dc.description.abstractPeriod (PER) protein phosphorylation is a critical regulator of circadian period, yet an integrated understanding of the role and interaction between phosphorylation sites that can both increase and decrease PER2 stability remains elusive. Here, we propose a phosphoswitch model, where two competing phosphorylation sites determine whether PER2 has a fast or slow degradation rate. This mathematical model accurately reproduces the three-stage degradation kinetics of endogenous PER2. We predict and demonstrate that the phosphoswitch is intrinsically temperature sensitive, slowing down PER2 degradation as a result of faster reactions at higher temperatures. The phosphoswitch provides a biochemical mechanism for circadian temperature compensation of circadian period. This phosphoswitch additionally explains the phenotype of Familial Advanced Sleep Phase (FASP) and CK1 epsilon(tau) genetic circadian rhythm disorders, metabolic control of PER2 stability, and how drugs that inhibit CK1 alter period. The phosphoswitch provides a general mechanism to integrate diverse stimuli to regulate circadian period.-
dc.languageEnglish-
dc.publisherCELL PRESS-
dc.titleA Period2 Phosphoswitch Regulates and Temperature Compensates Circadian Period-
dc.typeArticle-
dc.identifier.wosid000366585100009-
dc.identifier.scopusid2-s2.0-84951953678-
dc.type.rimsART-
dc.citation.volume60-
dc.citation.issue1-
dc.citation.beginningpage77-
dc.citation.endingpage88-
dc.citation.publicationnameMOLECULAR CELL-
dc.identifier.doi10.1016/j.molcel.2015.08.022-
dc.contributor.localauthorKim, Jae Kyoung-
dc.contributor.nonIdAuthorZhou, Min-
dc.contributor.nonIdAuthorEng, Gracie Wee Ling-
dc.contributor.nonIdAuthorForger, Daniel B.-
dc.contributor.nonIdAuthorVirshup, David M.-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordPlusSLEEP PHASE SYNDROME-
dc.subject.keywordPlusCASEIN KINASE 1-
dc.subject.keywordPlusCLOCK SPEED-
dc.subject.keywordPlusNEUROSPORA-CRASSA-
dc.subject.keywordPlusO-GLCNACYLATION-
dc.subject.keywordPlusGENE-EXPRESSION-
dc.subject.keywordPlusTAU MUTATION-
dc.subject.keywordPlusPHOSPHORYLATION-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusPER2-
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 42 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0