Associations between Long-Term Exposure to Chemical Constituents of Fine Particulate Matter (PM2.5) and Mortality in Medicare Enrollees in the Eastern United States

Cited 86 time in webofscience Cited 81 time in scopus
  • Hit : 687
  • Download : 372
BACKGROUND: Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. OBJECTIVES: We assembled a data set of 12.5 million Medicare enrollees (>= 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). METHODS: For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. RESULTS: One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. CONCLUSIONS: Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition can partly explain the differential toxicity of PM2.5.
Publisher
US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
Issue Date
2015-05
Language
English
Article Type
Article
Citation

ENVIRONMENTAL HEALTH PERSPECTIVES, v.123, no.5, pp.467 - 474

ISSN
0091-6765
DOI
10.1289/ehp.1307549
URI
http://hdl.handle.net/10203/200244
Appears in Collection
MA-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 86 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0