Recent progress in atomistic simulation of electrical current DNA sequencing

Cited 41 time in webofscience Cited 40 time in scopus
  • Hit : 605
  • Download : 221
DC FieldValueLanguage
dc.contributor.authorKim, Han Seulko
dc.contributor.authorKim, Yong-Hoonko
dc.date.accessioned2015-07-22T05:20:23Z-
dc.date.available2015-07-22T05:20:23Z-
dc.date.created2015-06-23-
dc.date.created2015-06-23-
dc.date.issued2015-07-
dc.identifier.citationBIOSENSORS & BIOELECTRONICS, v.69, pp.186 - 198-
dc.identifier.issn0956-5663-
dc.identifier.urihttp://hdl.handle.net/10203/200084-
dc.description.abstractWe review recent advances in the DNA sequencing method based on measurements of transverse electrical currents. Device configurations proposed in the literature are classified according to whether the molecular fingerprints appear as the major (Mode I) or perturbing (Mode II) current signals. Scanning tunneling microscope and tunneling electrode gap configurations belong to the former category, while the nanochannels with or without an embedded nanopore belong to the latter. The molecular sensing mechanisms of Modes I and II roughly correspond to the electron tunneling and electrochemical gating, respectively. Special emphasis will be given on the computer simulation studies, which have been playing a critical role in the initiation and development of the field. We also highlight low-dimensional nanomaterials such as carbon nanotubes, graphene, and graphene nanoribbons that allow the novel Mode II approach. Finally, several issues in previous computational studies are discussed, which points to future research directions toward more reliable simulation of electrical current DNA sequencing devices.-
dc.languageEnglish-
dc.publisherELSEVIER ADVANCED TECHNOLOGY-
dc.subjectTRANSVERSE ELECTRONIC TRANSPORT-
dc.subjectSCANNING TUNNELING MICROSCOPE-
dc.subjectCARBON NANOTUBES-
dc.subjectGRAPHENE NANOPORES-
dc.subjectCHARGE-TRANSPORT-
dc.subjectSINGLE-
dc.subjectTRANSLOCATION-
dc.subjectMOLECULE-
dc.subjectCONDUCTANCE-
dc.subjectDEVICE-
dc.titleRecent progress in atomistic simulation of electrical current DNA sequencing-
dc.typeArticle-
dc.identifier.wosid000356642900025-
dc.identifier.scopusid2-s2.0-84924044193-
dc.type.rimsART-
dc.citation.volume69-
dc.citation.beginningpage186-
dc.citation.endingpage198-
dc.citation.publicationnameBIOSENSORS & BIOELECTRONICS-
dc.identifier.doi10.1016/j.bios.2015.02.020-
dc.contributor.localauthorKim, Yong-Hoon-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorDNA sequencing-
dc.subject.keywordAuthorNanopore-
dc.subject.keywordAuthorCarbon nanotubes-
dc.subject.keywordAuthorGraphene-
dc.subject.keywordAuthorAtomistic simulation-
dc.subject.keywordAuthorQuantum electron transport-
dc.subject.keywordPlusTRANSVERSE ELECTRONIC TRANSPORT-
dc.subject.keywordPlusSCANNING TUNNELING MICROSCOPE-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusGRAPHENE NANOPORES-
dc.subject.keywordPlusCHARGE-TRANSPORT-
dc.subject.keywordPlusSINGLE-
dc.subject.keywordPlusTRANSLOCATION-
dc.subject.keywordPlusMOLECULE-
dc.subject.keywordPlusCONDUCTANCE-
dc.subject.keywordPlusDEVICE-
Appears in Collection
EEW-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 41 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0