A 1.22 TOPS and 1.52 mW/MHz Augmented Reality Multicore Processor With Neural Network NoC for HMD Applications

Cited 21 time in webofscience Cited 22 time in scopus
  • Hit : 355
  • Download : 0
Real-time augmented reality (AR) is actively studied for the future user interface and experience in high-performance head-mounted display (HMD) systems. The small battery size and limited computing power of the current HMD, however, fail to implement the real-time markerless AR in the HMD. In this paper, we propose a real-time and low-power AR processor for advanced 3D-AR HMD applications. For the high throughput, the processor adopts task-level pipelined SIMD-PE clusters and a congestion-aware network-on-chip (NoC). Both of these two features exploit the high data-level parallelism (DLP) and task-level parallelism (TLP) with the pipelined multicore architecture. For the low power consumption, it employs a vocabulary forest accelerator and a mixed-mode support vector machine (SVM)-based DVFS control to reduce unnecessary external memory accesses and core activation. The proposed 4 mm 8 mm HMD AR processor is fabricated using 65 nm CMOS technology for a battery-powered HMD platform with real-time AR operation. It consumes 381 mW average power and 778 mW peak power at 250 MHz operating frequency and 1.2 V supply voltage. It achieves 1.22 TOPS peak performance and 1.57 TOPS/W energy efficiency, which are, respectively, and higher than the state of the art.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2015-01
Language
English
Article Type
Article
Citation

IEEE JOURNAL OF SOLID-STATE CIRCUITS, v.50, no.1, pp.113 - 124

ISSN
0018-9200
DOI
10.1109/JSSC.2014.2352303
URI
http://hdl.handle.net/10203/195212
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 21 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0