Carrier injection efficiencies and energy level alignments of multilayer graphene anodes for organic light-emitting diodes with different hole injection layers

Cited 27 time in webofscience Cited 25 time in scopus
  • Hit : 583
  • Download : 0
The carrier injection efficiencies of organic light-emitting diodes with a multilayer graphene (MLG) anode were compared for different hole injection layers (HIL). The energy level alignments at the hole injecting interface were also studied by using the ultraviolet photoelectron spectroscopy (UPS). We employed 1,1-bis[4-[N,N'-di(p-tolyl)amino]phenyl]cyclo-hexane (TAPC) as the hole transporting materials, while N,N'-bis(naphthalen-l-yl)-N, N'-bis(phenyl)benzidine (NPB) or 1,4,5,8,9,12-hexaaza-triphenylene-2,3,6,7,10,11-hexacarbonitrile (HAT-CN) was used as the HIL. The current voltage characteristics of hole-only devices showed that the MLG anode was only slightly inferior to the indium-tin oxide (ITO) anode in hole injection performance for all the HIL layers. The best efficiency was observed for both MLG and ITO anodes with HAT-CN HIL. We compared UPS-measured energy level alignment of TAPC/HIL/MLG interface for different HILs and concluded that the unique charge generation interface at TAPC/HAT-CN played a crucial role for the improved performance of HAT-CN HIL.
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Issue Date
2014-11
Language
English
Article Type
Article
Citation

CARBON, v.79, pp.623 - 630

ISSN
0008-6223
DOI
10.1016/j.carbon.2014.08.024
URI
http://hdl.handle.net/10203/192926
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 27 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0