Dynamic asset allocation for varied financial markets under regime switching framework

Cited 25 time in webofscience Cited 0 time in scopus
  • Hit : 363
  • Download : 34
DC FieldValueLanguage
dc.contributor.authorBae, Geum Ilko
dc.contributor.authorKim, Woo Changko
dc.contributor.authorMulvey, John M.ko
dc.date.accessioned2014-09-01T08:34:20Z-
dc.date.available2014-09-01T08:34:20Z-
dc.date.created2014-03-12-
dc.date.created2014-03-12-
dc.date.issued2014-04-
dc.identifier.citationEUROPEAN JOURNAL OF OPERATIONAL RESEARCH, v.234, no.2, pp.450 - 458-
dc.identifier.issn0377-2217-
dc.identifier.urihttp://hdl.handle.net/10203/189568-
dc.description.abstractAsset allocation among diverse financial markets is essential for investors especially under situations such as the financial crisis of 2008. Portfolio optimization is the most developed method to examine the optimal decision for asset allocation. We employ the hidden Markov model to identify regimes in varied financial markets; a regime switching model gives multiple distributions and this information can convert the static mean variance model into an optimization problem under uncertainty, which is the case for unobservable market regimes. We construct a stochastic program to optimize portfolios under the regime switching framework and use scenario generation to mathematically formulate the optimization problem. In addition, we build a simple example for a pension fund and examine the behavior of the optimal solution over time by using a rolling-horizon simulation. We conclude that the regime information helps portfolios avoid risk during left-tail events.-
dc.languageEnglish-
dc.publisherELSEVIER SCIENCE BV-
dc.subjectMODEL-
dc.subjectRISK-
dc.subjectHETEROSKEDASTICITY-
dc.subjectMANAGEMENT-
dc.subjectSELECTION-
dc.titleDynamic asset allocation for varied financial markets under regime switching framework-
dc.typeArticle-
dc.identifier.wosid000330750400012-
dc.identifier.scopusid2-s2.0-84890859315-
dc.type.rimsART-
dc.citation.volume234-
dc.citation.issue2-
dc.citation.beginningpage450-
dc.citation.endingpage458-
dc.citation.publicationnameEUROPEAN JOURNAL OF OPERATIONAL RESEARCH-
dc.identifier.doi10.1016/j.ejor.2013.03.032-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorKim, Woo Chang-
dc.contributor.nonIdAuthorMulvey, John M.-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorInvestment analysis-
dc.subject.keywordAuthorRegime identification-
dc.subject.keywordAuthorHidden Markov model-
dc.subject.keywordAuthorStochastic programming-
dc.subject.keywordAuthorPortfolio optimization-
dc.subject.keywordPlusMODEL-
dc.subject.keywordPlusRISK-
dc.subject.keywordPlusHETEROSKEDASTICITY-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusSELECTION-
Appears in Collection
IE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 25 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0