Joint Signal and Channel State Information Compression for the Backhaul of Uplink Network MIMO Systems

Cited 37 time in webofscience Cited 38 time in scopus
  • Hit : 463
  • Download : 21
In network MIMO cellular systems, subsets of base stations (BSs), or remote radio heads, are connected via backhaul links to central units (CUs) that perform joint encoding in the downlink and joint decoding in the uplink. Focusing on the uplink, an effective solution for the communication between BSs and the corresponding CU on the backhaul links is based on compressing and forwarding the baseband received signal from each BS. In the presence of ergodic fading, communicating the channel state information (CSI) from the BSs to the CU may require a sizable part of the backhaul capacity. In a prior work, this aspect was studied by assuming a Compress-Forward-Estimate (CFE) approach, whereby the BSs compress the training signal and CSI estimation takes place at the CU. In this work, instead, an Estimate-Compress-Forward (ECF) approach is investigated, whereby the BSs perform CSI estimation and forward a compressed version of the CSI to the CU. This choice is motivated by the information theoretic optimality of separate estimation and compression. Various ECF strategies are proposed that perform either separate or joint compression of estimated CSI and received signal. Moreover, the proposed strategies are combined with distributed source coding when considering multiple BSs. "Semi-coherent" strategies are also proposed that do not convey any CSI or training information on the backhaul links. Via numerical results, it is shown that a proper design of ECF strategies based on joint received signal and estimated CSI compression or of semi-coherent schemes leads to substantial performance gains compared to more conventional approaches based on non-coherent transmission or the CFE approach.
Publisher
IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
Issue Date
2014-03
Language
English
Article Type
Article
Keywords

RAYLEIGH-FADING CHANNELS; DISTRIBUTED COMPRESSION; CAPACITY; COMMUNICATION; KNOWLEDGE; LINKS

Citation

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, v.13, no.3, pp.1555 - 1567

ISSN
1536-1276
DOI
10.1109/TWC.2014.012114.131004
URI
http://hdl.handle.net/10203/189323
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 37 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0