A New Susceptibility-Weighted Image Reconstruction Method for the Reduction of Background Phase Artifacts

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 207
  • Download : 109
PurposeTo significantly reduce the background phase effects, especially at the air-tissue interface, and to enhance the desirable local structures of veins in susceptibility-weighted imaging. MethodsIn the proposed reconstruction method called Magnitude of Complex Filtering, a complex-valued magnetic resonance image is acquired using a flow-compensated high-resolution 3D gradient-echo sequence and the magnitude of the complex-valued image is set to 1 so that the phase information, which contains details of the local susceptibility, is emphasized. Then, the nonlinear filter of the Magnitude of Complex Filtering method is applied to the complex-valued image with a constant magnitude. This filter utilizes the magnitude of the low-pass and high-pass filtered complex data to selectively reduce the background phase effects while enhancing the local structures. The filter output is then processed to generate a susceptibility-weighted image. ResultsCompared with the conventional susceptibility-weighted images generated by a homodyne high-pass filter, the susceptibility-weighted images from the proposed Magnitude of Complex Filtering method show significant improvement; the undesirable artifacts at the air-tissue interface regions and the brain boundaries are significantly reduced, while the contrast of the local structures of veins is enhanced. ConclusionThe Magnitude of Complex Filtering method successfully reduced most background phase effects without requiring additional processing or scan time.
Publisher
WILEY-BLACKWELL
Issue Date
2014-03
Language
English
Article Type
Article
Citation

MAGNETIC RESONANCE IN MEDICINE, v.71, no.3, pp.1324 - 1335

ISSN
0740-3194
DOI
10.1002/mrm.24776
URI
http://hdl.handle.net/10203/188787
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0