Laser ultrasonic imaging and damage detection for a rotating structure

Cited 17 time in webofscience Cited 0 time in scopus
  • Hit : 364
  • Download : 0
This study presents a laser ultrasonic imaging and damage detection technique that creates images of ultrasonic waves propagating on a rotating structure and identifies damage. Laser ultrasonics is attractive for nondestructive testing mainly because of two reasons: (1) ultrasonic waves can be generated and/or measured in a noncontact manner and (2) even a small defect can be detected when laser ultrasonic scanning produces ultrasonic images with high spatial resolution. However, when it comes to a moving target, it becomes challenging to create reliable ultrasonic images. In this study, ultrasonic wave propagation images are obtained from a rotating blade using a pulse laser beam for ultrasonic generation, a galvanometer for laser scanning, and an embedded piezoelectric sensor for ultrasonic measurement. To properly estimate the laser excitation points during the scanning process rather than to precisely control the excitation points, a simple but rather effective localization technique is developed so that ultrasonic images can be constructed even from a moving target. Once the ultrasonic wave propagation images are created, damage on the target structure is visualized using a specially designed standing wave filter.
Publisher
SAGE PUBLICATIONS LTD
Issue Date
2013-09
Language
English
Article Type
Article
Citation

STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, v.12, no.5-6, pp.494 - 506

ISSN
1475-9217
DOI
10.1177/1475921713507100
URI
http://hdl.handle.net/10203/188559
Appears in Collection
CE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 17 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0