Saliency Combined Particle Filtering for Aircraft Tracking

Cited 7 time in webofscience Cited 0 time in scopus
  • Hit : 424
  • Download : 91
Vision-based aircraft tracking has been considered for emerging real-world applications, such as collision avoidance, air traffic surveillance, and target tracking for military use. However, conventional tracking methods often fail in following aircraft due to 1) variations of object shape, 2) continuously varying background, and 3) unpredictable flight motion. In this paper, we address the problems of vision-based aircraft tracking. To this ends, we propose a principled manner of improving color-based tracking algorithm by combining a biologically inspired saliency feature. More specifically, we exploit the integration of color distributions into particle filtering, which is a Monte Carlo method for general nonlinear filtering problems. To overcome the varying appearances which are usually from changing illumination and pose conditions, we update the target color model. Furthermore, we adopt a structure tensor based saliency algorithm to incorporate the saliency features into particle filter framework, which results in robustly assigning appropriate particle weights even in complex backgrounds. The rationale behind our approach is that color and saliency information are complementary, both mutually fulfilling and completing each other, especially when tracking aircraft in a harsh environment. Tests on real flight sequences reveal that the proposed system yields convincing tracking outcomes under both variations of background and sudden target motion changes.
Publisher
SPRINGER
Issue Date
2014-07
Language
English
Article Type
Article
Keywords

TARGET TRACKING; OBJECT TRACKING; VISION; UAVS

Citation

JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, v.76, no.1, pp.19 - 31

ISSN
1939-8018
DOI
10.1007/s11265-013-0803-x
URI
http://hdl.handle.net/10203/187409
Appears in Collection
EE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 7 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0