PreSPI: a domain combination based prediction system for protein-protein interaction

Cited 61 time in webofscience Cited 72 time in scopus
  • Hit : 406
  • Download : 522
With the accumulation of protein and its related data on the Internet, many domain-based computational techniques to predict protein interactions have been developed. However, most techniques still have many limitations when used in real fields. They usually suffer from low accuracy in prediction and do not provide any interaction possibility ranking method for multiple protein pairs. In this paper, we propose a probabilistic framework to predict the interaction probability of proteins and develop an interaction possibility ranking method for multiple protein pairs. Using the ranking method, one can discern the protein pairs that are more likely to interact with each other in multiple protein pairs. The validity of the prediction model was evaluated using an interacting set of protein pairs in yeast and an artificially generated non-interacting set of protein pairs. When 80% of the set of interacting protein pairs in the DIP (Database of Interacting Proteins) was used as a learning set of interacting protein pairs, high sensitivity (77%) and specificity (95%) were achieved for the test groups containing common domains with the learning set of proteins within our framework. The stability of the prediction model was also evident when tested over DIP CORE, HMS-PCI and TAP data. In the validation of the ranking method, we reveal that some correlations exist between the interacting probability and the accuracy of the prediction.
Publisher
OXFORD UNIV PRESS
Issue Date
2004
Language
English
Article Type
Article
Keywords

DATABASE; SEQUENCES; CLASSIFICATION; COMPLEXES

Citation

NUCLEIC ACIDS RESEARCH, v.32, no.21, pp.6312 - 6320

ISSN
0305-1048
DOI
10.1093/nar/gkh972
URI
http://hdl.handle.net/10203/18026
Appears in Collection
CS-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 61 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0