QUBE: a Quick algorithm for Updating BEtweenness centrality

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 455
  • Download : 158
The betweenness centrality of a vertex in a graph is a measure for the participation of the vertex in the shortest paths in the graph. The Betweenness centrality is widely used in network analyses. Especially in a social network, the recursive computation of the betweenness centralities of vertices is performed for the community detection and finding the influential user in the network. Since a social network graph is frequently updated, it is necessary to update the betweenness centrality efficiently. When a graph is changed, the betweenness centralities of all the vertices should be recomputed from scratch using all the vertices in the graph. To the best of our knowledge, this is the first work that proposes an efficient algorithm which handles the update of the betweenness centralities of vertices in a graph. In this paper, we propose a method that efficiently reduces the search space by finding a candidate set of vertices whose betweenness centralities can be updated and computes their betweenness centeralities using candidate vertices only. As the cost of calculating the betweenness centrality mainly depends on the number of vertices to be considered, the proposed algorithm significantly reduces the cost of calculation. The proposed algorithm allows the transformation of an existing algorithm which does not consider the graph update. Experimental results on large real datasets show that the proposed algorithm speeds up the existing algorithm 2 to 2418 times depending on the dataset.
WWW '12
Issue Date

International World Wide Web Conference (WWW 2012), pp.351 - 360

Appears in Collection
CS-Conference Papers(학술회의논문)


  • mendeley


rss_1.0 rss_2.0 atom_1.0