A Combining Forecast Method using a Probabilistic Neural Network. 확률적 신경망을 이용한 예측치 결합 모형

Cited 0 time in webofscience Cited 0 time in scopus
  • Hit : 277
  • Download : 0
Many studies have focused considerable attention on choosing a model that represents the underlying process of a time series and on using that model to forecast the future. In the real applications, however, there may be cases in which a single model cannot represent all relevant characteristics of the original time series. In such circumstances, combining the forecasts from several models may yield better performance. The most popular methods for combining forecasts involve taking a weighted average of multiple forecasts. These weights, however, are usually unstable. When the assumptions of normality and unbiasedness of forecast errors are satisfied, a Bayesian method can be used to update the weights. In applications, however, there are many circumstances in which the Bayesian method is not appropriate. This paper proposes a PNN (Probabilistic Neural Network) approach to combining forecasts that can be applied when the assumptions of normality or unbiasedness of the forecast errors are not satisfied. The PNN method has traditionally been used in pattern recognition. It is similar to the Bayesian approach and we suggest its use as an updating method for unstable weights when combining forecasts. Unlike the Bayesian approach, it does not require the assumption of a specific prior distribution because it estimates the probability distribution from given data. Empirical results reveal that the PNN method offers superior predictive capabilities.
Publisher
Statistical Prediction and Computing
Issue Date
2000-04
Language
ENG
Citation

The Tenth Japan and Korea Joint Conference of Statistics, pp.41 - 46

URI
http://hdl.handle.net/10203/137551
Appears in Collection
MT-Conference Papers(학술회의논문)
Files in This Item
There are no files associated with this item.

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0