Step coverage modeling of thin films in atomic layer deposition

Cited 31 time in webofscience Cited 0 time in scopus
  • Hit : 1077
  • Download : 2932
DC FieldValueLanguage
dc.contributor.authorKim, Ja-Yongko
dc.contributor.authorAhn, Ji-Hoonko
dc.contributor.authorKang, Sang-Wonko
dc.contributor.authorKim, Jin-Hyockko
dc.date.accessioned2007-09-04T02:47:50Z-
dc.date.available2007-09-04T02:47:50Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2007-04-
dc.identifier.citationJOURNAL OF APPLIED PHYSICS, v.101, no.7-
dc.identifier.issn0021-8979-
dc.identifier.urihttp://hdl.handle.net/10203/1274-
dc.description.abstractA film growth model on microfeatures is proposed to evaluate step coverage depending on precursor injection time in atomic layer deposition. The proposed model is based on that the chemisorption rate of precursors at a certain position along the depth of a microfeature is determined by the total flux of precursors and the sticking probability. The total flux includes the flux coming from the entrance of a microfeature and the flux reflected from other positions inside a microfeature, and the sticking probability depends on the surface coverage of chemisorbed precursor, which is a function of precursor injection time. The proposed model was applied to the deposition of Al2O3 films on 0.3 mu m diameter holes with an aspect ratio of 10. It was confirmed that the experimental data for step coverage depending on precursor injection time follow the trend predicted by the proposed model. (c) 2007 American Institute of Physics.-
dc.description.sponsorshipThis work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD)(KRF-2005-005-J09702).en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherAmer Inst Physics-
dc.subjectEPITAXY-
dc.subjectGROWTH-
dc.subjectTRENCHES-
dc.subjectSURFACE-
dc.subjectSCATTERING-
dc.subjectSIMULATION-
dc.subjectTRANSPORT-
dc.subjectBEAMS-
dc.subjectOXIDE-
dc.subjectMETAL-
dc.titleStep coverage modeling of thin films in atomic layer deposition-
dc.typeArticle-
dc.identifier.wosid000245691000022-
dc.identifier.scopusid2-s2.0-34247204839-
dc.type.rimsART-
dc.citation.volume101-
dc.citation.issue7-
dc.citation.publicationnameJOURNAL OF APPLIED PHYSICS-
dc.identifier.doi10.1063/1.2714685-
dc.contributor.localauthorKang, Sang-Won-
dc.contributor.nonIdAuthorKim, Ja-Yong-
dc.contributor.nonIdAuthorAhn, Ji-Hoon-
dc.contributor.nonIdAuthorKim, Jin-Hyock-
dc.type.journalArticleArticle-
dc.subject.keywordPlusEPITAXY-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordPlusTRENCHES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusSCATTERING-
dc.subject.keywordPlusSIMULATION-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusBEAMS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusMETAL-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 31 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0