Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts

Cited 1820 time in webofscience Cited 1690 time in scopus
  • Hit : 491
  • Download : 211
DC FieldValueLanguage
dc.contributor.authorChoi, Min-Keeko
dc.contributor.authorNa, Kyung-Suko
dc.contributor.authorKim, Jeong-Namko
dc.contributor.authorSakamoto, Yasuhiroko
dc.contributor.authorTerasaki, Osamuko
dc.contributor.authorRyoo, Ryongko
dc.date.accessioned2009-11-12T01:45:11Z-
dc.date.available2009-11-12T01:45:11Z-
dc.date.created2012-02-06-
dc.date.created2012-02-06-
dc.date.issued2009-09-
dc.identifier.citationNATURE, v.461, no.7261, pp.246 - 120-
dc.identifier.issn0028-0836-
dc.identifier.urihttp://hdl.handle.net/10203/12461-
dc.description.abstractZeolites-microporous crystalline aluminosilicates-are widely used in petrochemistry and fine-chemical synthesis(1-3) because strong acid sites within their uniform micropores enable size- and shape-selective catalysis. But the very presence of the micropores, with aperture diameters below 1 nm, often goes hand-in-hand with diffusion limitations(3-5) that adversely affect catalytic activity. The problem can be overcome by reducing the thickness of the zeolite crystals, which reduces diffusion path lengths and thus improves molecular diffusion(4,5). This has been realized by synthesizing zeolite nanocrystals(6), by exfoliating layered zeolites(7-9), and by introducing mesopores in the microporous material through templating strategies(10-17) or demetallation processes(18-22). But except for the exfoliation, none of these strategies has produced 'ultrathin' zeolites with thicknesses below 5 nm. Here we show that appropriately designed bifunctional surfactants can direct the formation of zeolite structures on themesoporous and microporous length scales simultaneously and thus yield MFI (ZSM-5, one of the most important catalysts in the petrochemical industry) zeolite nanosheets that are only 2 nm thick, which corresponds to the b-axis dimension of a single MFI unit cell. The large number of acid sites on the external surface of these zeolites renders them highly active for the catalytic conversion of large organic molecules, and the reduced crystal thickness facilitates diffusion and thereby dramatically suppresses catalyst deactivation through coke deposition during methanol-to-gasoline conversion. We expect that our synthesis approach could be applied to other zeolites to improve their performance in a range of important catalytic applications.-
dc.description.sponsorshipThis work was mainly supported by the National Honor Scientist Program of the Ministry of Education, Science and Technology in Korea. Electron microscopic studies were performed with help from the measurement and analysis team at the National NanoFab Center, from the research supporting team at KAIST, and also at the Electron Microscopy Center (EMC) at Stockholm University with support from the Knut and Alice Wallenberg Foundation. Y.S. and O.T. thank the Swedish Research Council (VR) and the Japan Science and Technology Agency (JST), respectively.en
dc.languageEnglish-
dc.language.isoen_USen
dc.publisherNATURE PUBLISHING GROUP-
dc.subjectMESOPOROUS MOLECULAR-SIEVES-
dc.subjectCONTROLLED DESILICATION-
dc.subjectCOKE FORMATION-
dc.subjectZSM-5-
dc.subjectCRYSTALS-
dc.subjectGENERATION-
dc.subjectMECHANISM-
dc.titleStable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts-
dc.typeArticle-
dc.identifier.wosid000269654600040-
dc.identifier.scopusid2-s2.0-70249134576-
dc.type.rimsART-
dc.citation.volume461-
dc.citation.issue7261-
dc.citation.beginningpage246-
dc.citation.endingpage120-
dc.citation.publicationnameNATURE-
dc.identifier.doi10.1038/nature08288-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorChoi, Min-Kee-
dc.contributor.localauthorRyoo, Ryong-
dc.contributor.nonIdAuthorSakamoto, Yasuhiro-
dc.contributor.nonIdAuthorTerasaki, Osamu-
dc.type.journalArticleArticle-
dc.subject.keywordPlusMESOPOROUS MOLECULAR-SIEVES-
dc.subject.keywordPlusCONTROLLED DESILICATION-
dc.subject.keywordPlusCOKE FORMATION-
dc.subject.keywordPlusZSM-5-
dc.subject.keywordPlusCRYSTALS-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordPlusMECHANISM-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 1820 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0