Treatment of the thermal-hydraulic uncertainties in the pressurized thermal shock analysis

Cited 6 time in webofscience Cited 0 time in scopus
  • Hit : 955
  • Download : 1089
The pressurized thermal shock (PTS) analysis is a quantitative analysis to calculate the vessel failure probability of the embrittled reactor pressure vessel. The PTS analysis consists of three major parts, such as the probabilistic safety analysis (PSA), the thermal-hydraulic analysis (T/H), and the probabilistic fracture mechanics (PFM) analysis. Because each analysis involves many parameters and assumptions associated with the uncertainties, it is important to identify and incorporate them into the analysis. Though the PSA and PFM analysis can be easily treated statistically, the thermal-hydraulic analysis results are very difficult to be treated statistically. Instead, sensitivity analyses of the thermal-hydraulic inputs were performed to understand the significance of the variation in the thermal-hydraulic inputs to the PFM analysis. In this study, the existing PFM code was modified to incorporate the uncertainties in the thermal-hydraulic inputs for the PFM analysis. The effects of the uncertainties in the thermal-hydraulic inputs for the vessel failure probabilities were evaluated using the modified code. The results showed the effects of uncertainties in the thermal-hydraulic inputs on the vessel failure probabilities are not significant for the ranges of the transient types. Even for the larger uncertainties, the effects on the vessel failure probabilities are small. Also, the effects of the thermal-hydraulic uncertainties vary depending on the transient characteristics such that the effects are greatest for the pressure dominant transient. Within the transient, the relative increases in the failure probabilities are greatest for the circumferentially oriented semi-elliptical flaws. It was found that the results of the sensitivity analysis using one standard deviation are conservative enough to bound the analysis results considering the uncertainties in the thermal-hydraulic inputs. (c) 2006 Elsevier B.V. All rights reserved.
Publisher
ELSEVIER SCIENCE SA
Issue Date
2007-01
Language
English
Article Type
Article
Citation

NUCLEAR ENGINEERING AND DESIGN, v.237, no.2, pp.143 - 152

ISSN
0029-5493
DOI
10.1016/j.nucengdes.2006.05.007
URI
http://hdl.handle.net/10203/1213
Appears in Collection
NE-Journal Papers(저널논문)
Files in This Item
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 6 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0