A New Sensing Metric to Reduce Data Fluctuations in a Nanogap-Embedded Field-Effect Transistor Biosensor

Cited 60 time in webofscience Cited 0 time in scopus
  • Hit : 553
  • Download : 114
DC FieldValueLanguage
dc.contributor.authorKim, Chang-Hoonko
dc.contributor.authorAhn, Jae-Hyukko
dc.contributor.authorLee, Kyung-Bokko
dc.contributor.authorJung, Cheul-Heeko
dc.contributor.authorPark, Hyun-Gyuko
dc.contributor.authorChoi, Yang-Kyuko
dc.date.accessioned2013-03-12T17:03:58Z-
dc.date.available2013-03-12T17:03:58Z-
dc.date.created2012-10-30-
dc.date.created2012-10-30-
dc.date.created2012-10-30-
dc.date.issued2012-10-
dc.identifier.citationIEEE TRANSACTIONS ON ELECTRON DEVICES, v.59, no.10, pp.2825 - 2831-
dc.identifier.issn0018-9383-
dc.identifier.urihttp://hdl.handle.net/10203/102950-
dc.description.abstractA new sensing metric is proposed for a field-effect transistor (FET)-based biosensor. As proof of concept, a nanogap-embedded FET is studied to reduce data fluctuations that originate from process variations during FET fabrication and environmental variations stemming from bioexperiments. The new sensing metric utilizes a crucial gate voltage (V-G@I-sub,I-max), which induces the maximum substrate current. The new sensing metric shows higher immunity against variations of the nanogap length, compared with the commonly used metric that relies on threshold voltage or drain current. The proposed metric also shows smaller fluctuation, which is caused by environmental variation coming from biotreatment steps. This analysis is verified experimentally and proved by device simulations. For simple analysis, the effect of external charge of the biomolecules is eliminated by using peptide nucleic acid, which is an electrically neutral biomolecule. Thus, by using such biomolecules, the permittivity effect rising from the biomolecules within the nanogap of the gate dielectric is investigated.-
dc.languageEnglish-
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC-
dc.titleA New Sensing Metric to Reduce Data Fluctuations in a Nanogap-Embedded Field-Effect Transistor Biosensor-
dc.typeArticle-
dc.identifier.wosid000309132200037-
dc.identifier.scopusid2-s2.0-84866741426-
dc.type.rimsART-
dc.citation.volume59-
dc.citation.issue10-
dc.citation.beginningpage2825-
dc.citation.endingpage2831-
dc.citation.publicationnameIEEE TRANSACTIONS ON ELECTRON DEVICES-
dc.identifier.doi10.1109/TED.2012.2209650-
dc.embargo.liftdate9999-12-31-
dc.embargo.terms9999-12-31-
dc.contributor.localauthorPark, Hyun-Gyu-
dc.contributor.localauthorChoi, Yang-Kyu-
dc.contributor.nonIdAuthorLee, Kyung-Bok-
dc.description.isOpenAccessN-
dc.type.journalArticleArticle-
dc.subject.keywordAuthorCoefficient of variation (CV)-
dc.subject.keywordAuthordrain current-
dc.subject.keywordAuthorfield-effect transistor (FET)-based biosensor-
dc.subject.keywordAuthorimpact ionization-
dc.subject.keywordAuthorlabel free-
dc.subject.keywordAuthornanogap-
dc.subject.keywordAuthornanogap-embedded FET-
dc.subject.keywordAuthorpeptide nucleic acid (PNA)-
dc.subject.keywordAuthorreliability-
dc.subject.keywordAuthorsubstrate current-
dc.subject.keywordAuthorthreshold voltage-
dc.subject.keywordPlusSILICON NANOWIRE BIOSENSORS-
dc.subject.keywordPlusELECTRICAL DETECTION-
dc.subject.keywordPlusHYBRIDIZATION-
dc.subject.keywordPlusSENSORS-
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 60 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0