CsSnI3: Semiconductor or Metal? High Electrical Conductivity and Strong Near-Infrared Photoluminescence from a Single Material. High Hole Mobility and Phase-Transitions

Cited 383 time in webofscience Cited 0 time in scopus
  • Hit : 453
  • Download : 0
CsSnI3 is an unusual perovskite that undergoes complex displacive and reconstructive phase transitions and exhibits near-infrared emission at room temperature. Experimental and theoretical studies of CsSnI3 have been limited by the lack of detailed crystal structure characterization and chemical instability. Here we describe the synthesis of pure polymorphic crystals, the preparation of large crack-/bubble-free ingots, the refined single-crystal structures, and temperature-dependent charge transport and optical properties of CsSnI3, coupled with ab initio first-principles density functional theory (DFT) calculations. In situ temperature-dependent single-crystal and synchrotron powder X-ray diffraction studies reveal the origin of polymorphous phase transitions of CsSnI3. The black orthorhombic form of CsSnI3 demonstrates one of the largest volumetric thermal expansion coefficients for inorganic solids. Electrical conductivity, Hall effect, and thermopower measurements on it show p-type metallic behavior with low carrier density, despite the optical band gap of 1.3 eV. Hall effect measurements of the black orthorhombic perovskite phase of CsSnI3 indicate that it is a p-type direct band gap semiconductor with carrier concentration at room temperature of similar to 10(17) cm(-3) and a hole mobility of similar to 585 cm(2) V-1 s(-1). The hole mobility is one of the highest observed among p-type semiconductors with comparable band gaps. Its powders exhibit a strong room-temperature near-IR emission spectrum at 950 nm. Remarkably, the values of the electrical conductivity and photoluminescence intensity increase with heat treatment. The DFT calculations show that the screened-exchange local density approximation-derived band gap agrees well with the experimentally measured band gap. Calculations of the formation energy of defects strongly suggest that the electrical and light emission properties possibly result from Sn defects in the crystal structure, which arise intrinsically. Thus, although stoichiometric CsSnI3 is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.
Publisher
AMER CHEMICAL SOC
Issue Date
2012-05
Language
English
Article Type
Article
Keywords

PLANE-WAVE METHOD; ELECTRONIC-STRUCTURE; 1ST-PRINCIPLES CALCULATIONS; COMPLEXES; HALIDES; TRIIODOSTANNATE(II); APPROXIMATION; CHALCOGENIDES; PEROVSKITES; RBSNI3

Citation

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, v.134, no.20, pp.8579 - 8587

ISSN
0002-7863
DOI
10.1021/ja301539s
URI
http://hdl.handle.net/10203/101987
Appears in Collection
NT-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 383 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0