A model on chemical looping combustion of methane in a bubbling fluidized-bed process

Cited 3 time in webofscience Cited 0 time in scopus
  • Hit : 364
  • Download : 0
We developed a mathematical model to discuss the performance of chemical looping combustion (CLC) of methane in continuous bubbling fluidized-beds. The model considers the particle population balance, oxidation and reduction rate of particles in fluidized beds. It also considers utilization efficiency of oxygen carrier (OC) particles, residence time of particles in each reactor, and particle size in reaction rate. The model was applied for a bubbling coreannulus fluidized-bed process. The core bed was the fuel reactor (0.08 m-i.d., 2.1 m-height) and the annulus bed was the air reactor (0.089 m-i.d., 0.15 m-o.d., 1.6 m-height). The process employed a type of Ni-based OC particles. The present model agrees reasonably well with the combustion efficiency measured in the process. Simulation was performed to investigate the effects of some variables for the process. The present model revealed that the range of circulation rate of OC particles for achieving complete combustion determined the operating range of the CLC system. The minimum circulation rate of OC particles for complete combustion decreased in the considered operating range as temperature or bed mass increased in the fuel reactor. A large mass of the fuel bed was necessary to obtain complete combustion at low fuel reactor temperature. The fresh feed rate of OC particles for steady state operation increased in complete combustion condition as temperature or static bed height or gas velocity increased.
Publisher
KOREAN INSTITUTE CHEMICAL ENGINEERS
Issue Date
2012-06
Language
English
Article Type
Article
Keywords

OXYGEN-CARRIER; FUEL REACTOR

Citation

KOREAN JOURNAL OF CHEMICAL ENGINEERING, v.29, no.6, pp.737 - 742

ISSN
0256-1115
DOI
10.1007/s11814-011-0238-7
URI
http://hdl.handle.net/10203/101813
Appears in Collection
CBE-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 3 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0