Crack Identification in a Rotating Shaft via the Reverse Directional Frequency Response Functions

Cited 10 time in webofscience Cited 0 time in scopus
  • Hit : 570
  • Download : 0
A method is proposed for identifying the location of an open transverse crack in flexible rotor systems by modeling the crack as a localized element with rotating asymmetry. It exploits the strong correlations between the modal constants of the reverse directional frequency response functions (r-dFRFs) and the degree and location of asymmetry. A map of the modal constants of the r-dFRFs for all elements is constructed to identify the location of crack by comparing the identified modal constants to those of the reference map. This paper also addresses practical issues associated with measurement noises and limited number of sensors. The proposed crack identification method is finally applied to a flexible rotor system with an open transverse crack in order to demonstrate the identification procedure for detection of the crack location.
Publisher
ASME-AMER SOC MECHANICAL ENG
Issue Date
2009-02
Language
English
Article Type
Article
Keywords

DAMAGE DETECTION; SENSITIVITY-ANALYSIS; MODAL PARAMETERS; LOCATION; LOCALIZATION; SYSTEM; BEAM

Citation

JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, v.131, no.1

ISSN
1048-9002
DOI
10.1115/1.2981168
URI
http://hdl.handle.net/10203/100335
Appears in Collection
ME-Journal Papers(저널논문)
Files in This Item
There are no files associated with this item.
This item is cited by other documents in WoS
⊙ Detail Information in WoSⓡ Click to see webofscience_button
⊙ Cited 10 items in WoS Click to see citing articles in records_button

qr_code

  • mendeley

    citeulike


rss_1.0 rss_2.0 atom_1.0