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ABSTRACT 
 

Down-up sampling of images is an essential process 
for spatial scalability of the video coding standard. We 
propose an efficient down-up sampling method in spatial 
domain using DCT kernel. The computational complexity 
of the proposed method is reduced by taking advantages 
of various symmetries of the combined DCT kernel. The 
proposed down-up sampling method is compared to that 
of MPEG-21 SVM 3.0 [1]. The proposed method 
outperforms the performance of MPEG-21 SVM 3.0 with 
slightly increased addition operation.    

 
1. INTRODUCTION 

Recently, MPEG-21 SVM 3.0 was proposed to provide 
scalable video model for standardization. It inherited most 
building blocks of H.264 with some improved features for 
scalability such as MCTF (motion compensated temporal 
filtering) [1]. For spatial scalability, 11 taps and 6 taps 
filters were exploited in SVM 3.0 for down and up 
sampling, respectively. Although their computational 
complexity and down-up sampling performance are 
proper to be exploited in scalable video coding, more 
improvement must be made for rate-distortion 
performance of scalable video coding, i.e., the 
performance of spatial scalability depends on the adopted 
down-up sampling method.  

Many researches were performed for image resizing by 
using DCT kernel employing characteristics of DCT [2-
6]. The down-up sampling using DCT kernel provides 
more improved visual quality and PSNR than those of 
simple bilinear interpolation method. The simple down-up 
sampling method using DCT kernel is the sequential 
operation of IDCT and DCT with bilinear interpolation in 
spatial domain. Although fast IDCT and DCT method is 
used for down-up sampling with consideration of zero 
coefficients in high frequency band, their computational 
complexity is higher than those of spatial domain filtering 
in SVM 3.0.       

In this paper, we introduce an efficient down-up 
sampling method using DCT and IDCT kernels, which are 
combined for efficient calculation.   

The proposed down-up sampling method exploits 
various symmetries inherited from DCT kernel, which is 
described in section 2. Experimental results and analysis 
of the proposed method are given in section 3, and section 
4 concludes the paper. 

 

2. Down-up sampling in spatial domain  

using DCT kernel 

Down sampling in spatial domain using DCT kernel is 
expressed by combination of DCT and IDCT kernels as 
follows: 
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where T denotes 1D DCT kernel, and N NB ×  and 

2 2
N ND
×

 

are the original image of N N×  and down-sampled 
image of 

2 2
N N
× , respectively. uT  represents upper 

kernels of DCT from row 1 to 
2
N , and the superscript, t, 

means transpose of the matrix. In eq. (1), 
2
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O
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 is the 

zero matrix of 
2
N N× . 
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 denote the 

vertical and horizontal down-sampling kernels, 
respectively. 

In the similar way, the upsampled image 2 2N NU ×  is 
obtained as follows:  
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It shows simple zero padding in the high frequency 
band. The element of the vertical up-sampling kernel, 

2
U
N NV ×  can be expressed as follows: 
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where 1n  and 2n  are the row and column indices of the 
vertical up-sampling kernel, respectively. From eq. (3), it 
is shown that the up-sampling kernel is symmetric, 
i.e., 2 1 2 2 1 2( , ) (2 1, 1)U U

N N N NV n n V N n N n× ×= − − − − . 
This symmetry can be exploited for reducing 
multiplications of up-sampling kernel as follows:  

 

( ) ( )

( ) ( )

1 2 1 2
1

2

1 2 1 2

    
    2 2
    
    

2 2

a d a d
a d b c b c

x x x xxb c
c b x b c b c
d a a d a d

x x x x

⎡ ⎤− +⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎡ ⎤ − +⎣ ⎦ ⎣ ⎦⎢ ⎥× − + × +⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥× =⎢ ⎥⎢ ⎥⎢ ⎥ + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥× + − × −
⎢ ⎥⎣ ⎦

     (4) 

 
Eq. (4) shows basic method for reducing 

multiplications, where left matrix shows similar symmetry 
of up-sampling kernel in eq. (3). As shown in eq. (4), the 
required number of multiplications were reduced to half 
of that of the original one. Using eq. (4), we can 
decompose up-sampling matrix as follows: 
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where superscript and subscript of 2

U
N NV ×  are omitted 

for simplicity in eqs. (5) and (6). Also, the input image 

N NB ×  is decomposed to be computed by eq. (4) as 
follows:    
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Therefore, vertical filtering using eqs. (4)-(8) can be re-
written as follows:  
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where rowR  denotes the row inversion of matrix. The 
horizontal up-sampling procedure can be performed in the 
similar way using eqs. (4)-(9). In addition to this 
reduction of multiplications, more reduction is still 
possible if characteristics of 1F  and 2F  are 
considered as follows:  
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where 1 2( , , )cc n n k  is defined in eq. (3).             

In eq. (10), 2F  filter is symmetric, i.e., 
2 2

1 2 1 2( 1, 1) ( , )
2
NF N n n F n n− − − − = . By using this 

symmetry, more decomposition of 2F  filter is possible, 
where 2F  filter is decomposed into 2,1F  and 2,2F  
filters by using eq. (5)-(6). The decomposition of 2F  

Authorized licensed use limited to: Korea Advanced Institute of Science and Technology. Downloaded on June 16, 2009 at 01:41 from IEEE Xplore.  Restrictions apply.



filter can be possible until 2F  filter has 2 rows and 1 
column. 

For computational efficiency of 1F filter, we can 
describe the 1F filter as follows: 
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Thanks to these relations, 1F  filter is decomposed 
further. For example, when N is 4, the 1F  filter can be 
decomposed as follows: 
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where ,i jf  is the (i-j)-th element of 

1

4 2F × . In eq. (14), 

0,0 2,1 1,0 3,1f f f f− = − and 0,1 2,0 1,1 3,0( )f f f f− = − −  are 

obvious from eqs. (12) and (13). Therefore, 1F is 
decomposed to 1,
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cF × . Also decomposition of 
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represented as 1, ,1
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reduction of multiplications by using the decomposed 

matrices 1,
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sF ×  and 1,
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cF × . When N is 4, the vertical up-
sampling in eq. (9) can be simplified as follows:  
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where the matrices 1

BV  and 2
BV  are defined as follows: 
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The horizontal up-sampling filter can be made in the 

similar way to the vertical up-sampling filter. Although 
the matrix size of down-sampling is different to that of 
up-sampling, the calculation procedure of down-sampling 
is identical to that of up-sampling. Therefore, the 
computational complexities of down and up-sampling are 
the same.  

Table 1 shows comparison of the computational 
complexity of SVM 3.0, fast DCT&IDCT, and the 
proposed up-sampling methods.  
 

Per pixel Multiplication Addition
SVM 3.0 1.5 3.75 

Fast DCT&IDCT 2.1875 4.4375 
Original matrix 6 4.5 

Proposed 1.5 5.25 
Table 1. The computational complexity of up-sampling  
method ( N=4 was applied ) 

 
We use the fastest DCT&IDCT [4] considering the zero 

coefficients. The proposed method outperforms the fast 
DCT&IDCT method with slightly increased number of 
additions, since the combined kernels provide more 
efficient calculation. The computational complexity of the 
proposed method has slightly increased addition operation 
to that of SVM 3.0.    
 

3. Experimental results 

We implemented the proposed down-up sampling 
method in SVM 3.0 video codec [1]. For an impartial 
comparison, the proposed down-up sampling kernels were 
converted to the fixed-point 16 bit integer type. Although 
the PSNR loss is expected in the fixed-point conversion, 
the loss is negligible. The value of 32 is multiplied to the 
kernel and then rounded to the nearest integer for 
converting the proposed kernels. We can further reduce 
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the number of multiplication by using shift operation in 
the integer implementation.  

We used two video sequences of Football and Foreman 
which have a spatial resolution of 352×288 (CIF) and 15 
Hz frame rate. The base layer were encoded with 176×144 
(QCIF) after down-sampling using SVM 3.0 and the 
proposed method. The enhancement layer uses the CIF 
resolution with up-sampling of the proposed method and 
SVM 3.0 for inter-layer prediction [1]. Although rate 
control does not exist in SVM 3.0, we set nearly the same 
bitrate in base layer for an impartial comparison. The 
GOP size and search range were 16 and 96 in integer pel, 
respectively.  

 Fig. 1 shows the rate-PSNR curves of the proposed 
and SVM 3.0 methods with 15 Hz. The temporal 
scalability will be given inherently by using MCTF [1], 
where GOP size as 16 provides four levels of temporal 
scalability. The high, middle, and low represent the 
bitrates of base layer. Football and Foreman have high 
(564, 228), middle (254, 88), and low (82, 32) kbps. If the 
base layer has the high bitrate, prediction in the 
enhancement layer will be efficient. Thus, the high 
bitrates shows extreme condition of experimental setting 
to show maximum performance of the proposed method. 
As shown in Fig. 1, the proposed method outperforms 
SVM 3.0 in high and middle bitrates. The maximum 
improvements of PSNR are about 1.2 dB and 0.5 dB in 
high and middle bitrates of base layer, respectively. Of 
course, when base layer was encoded with low bitrate, the 
rate-PSNR curves showed nearly the same performance. 

The visual quality of reconstructed frames seems good 
in comparison with that of SVM 3.0.      
 

4. Conclusions 

We proposed very efficient down-up sampling method 
for spatial scalability in SVM 3.0. The symmetric property 
in the combined DCT kernel provides efficient filtering 
method, which enables to operate properly in SVC 
decoder. The experimental result shows much PSNR 
improvements, when the base layer is encoded with high 
bitrates. The proposed method could be applied to MPEG-
21 SVC standardization. 
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(b) Foreman, 15 Hz
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Fig 1. Rate-PSNR curves of the SVM 3.0 and proposed 
method for (a) Football and (b) Foreman. 
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