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Abstract An indium tin oxide (ITO)-coated vertically
aligned nanowire array is fabricated, and the field emission
characteristics of the nanowire array are investigated. An
array of vertically aligned nanowires is considered an ideal
structure for a field emitter because of its parallel orien-
tation to the applied electric field. In this letter, a vertically
aligned nanowire array is fabricated by modified conven-
tional UV lithography and coated with 0.1-um-thick ITO.
The turn-on electric field intensity is about 2.0 V/um, and
the field enhancement factor, f§, is approximately 3,078
when the gap for field emission is 0.6 um, as measured
with a nanomanipulator in a scanning electron microscope.
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Field emission is quantum mechanical tunneling of elec-
trons through the surface potential barrier into vacuum [1],
which has been widely exploited in vacuum electronic
applications including electron guns, microwave tubes, and
flat panel displays [2]. Vertically aligned nanowire array
(VANA) shows excellent field emission properties owing
to a strong local electric field due to their parallel orien-
tation to the applied electric field [3]. Numerous studies
have been carried out on the fabrication of VANAs as field
emitters using bottom-up synthesis approaches [4-6].
However, these bottom-up methods have drawbacks such
as an expensive process and relatively low fabrication
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reliability, thus them unsuitable for mass
production.

In this letter, a top—down method of modified conven-
tional UV lithography is suggested for the fabrication of a
VANA, thereby resolving the problems of bottom-up
methods while allowing control over the VANA’s position
and shape. In the lithography process, a photoresist VANA
is fabricated with a UV exposure dose control. After the
lithography, a carbonization process (pyrolysis process) is
followed to provide volume contraction of the array’s
structure. The pyrolyzed carbon VANA is coated with a
0.1-pum-thick ITO layer in order to realize a durable field
emitter and to provide low turn-on voltage [7, 8]. ITO has
good transparence characteristics in the visible region of
the electromagnetic spectrum while maintaining high
electrical conductivity, thermal stability, and oxidation
resistance [4, 9]. In a field emission experiment, a
nanomanipulator in a scanning electron microscope (SEM)
is used in order to measure field emission while precisely
controlling the distance between the anode and cathode
(field emitter).

The fabrication process of the ITO-coated VANA is
shown in Fig. 1. Figure la shows circular aperture patterns
(¢ =1 pm) of a 0.1-um-thick chrome (Cr) layer on a
fused silica wafer. SU-8 50 (Microchem Co.) is deposited
on the Cr layer in Fig. 1b. The backside of the fused silica
wafer is exposed to UV light filtered by a narrow band-pass
filter (A = 365 nm and bandwidth = 10 nm, OptoSigma
Co.) with an exposure dose of 200 mJ/cm? in Fig. lc. The
intensity of UV light is concentrated to the central axis by
diffraction in the SU-8 medium, which defines a sharp,
high aspect ratio SU-8 structure [10]. After development of
SU-8 and Cr etching, the SU-8 VANA is obtained, as
shown in Fig. 1d. Figure le shows the pyrolyzed carbon
VANA obtained by a pyrolysis process in a quartz tube
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furnace at 900°C for 30 min [11]. Volume shrinkage to
approximately 60% occurs in this process for the SU-8
VANA. Finally, Fig. If shows the VANA coated with a
0.1-pum-thick ITO layer. The size of VANA is controlled
by the circular aperture patterns of a Cr layer on a fused
silica wafer and the aspect ratio by the UV light exposure
dose.

Figures 2a—c are the fabrication results of Fig. 1d—f,
respectively. Figure 2a shows a SEM image of a SU-8
VANA with a diameter of 1 pm produced with an UV
exposure dose of 200 mJ/cm® The aspect ratio of the
structure is more than 7. Figure 2b shows the pyrolyzed
carbon VANA after pyrolysis, where the volume shrinkage
is 60% and the aspect ratio is increased to more than 9.
Figure 2c shows the ITO-coated VANA with 0.1-pm-thick
ITO layer. Utsumi concluded that the best field emitter
should be high aspect ratio rounded whisker like this ITO-
coated VANA [12]. Figure 2d presents energy dispersive
spectrum (EDS) results showing the chemical composition
of the ITO-coated VANA, which comprises In, Sn, O, C,
and Si.

Figure 3a presents a schematic view of the experimental
setup for investigating the field emission characteristics
with a Zyvex nanomanipulator (Zyvex Instrument) oper-
ating inside a SEM vacuum chamber. The nanomanipulator
controls the distance between the ITO-coated VANA, the
field emitter, and the tungsten tip A, the counter electrode.
The tungsten tip A, the anode, is connected to the (4) of a

Fig. 1 Schematic view of (a)
fabrication process of ITO-
coated VANA. a Circular
aperture patterns (¢ = 1 pm) of

Keithley 4200 (Keithley Instrument Inc.), while the tung-
sten tip B, the cathode, on the surface of the wafer is
connected to the (-) of the instrument via a feed through to
apply voltage and to sense current. Figure 3b shows a SEM
image of the ITO VANA and the tungsten tip A in a SEM
vacuum chamber of 1.59 x 10~ >torr.

With the shortest distance, d, of 0.6 um, the current is
measured by the Keithley 4200 using the voltage sweep
function. As the voltage and the distance are known, the
I-E curve of the ITO-coated VANA can be determined, as
shown in Fig. 4a. As the electric field intensity (E) is
increased, the current (I) increases exponentially, following
the behavior of the Fowler—Nordheim (F-N) equation. The
field emission starts around 2.0 V/um and the maximum
current is 4.0 x 107° A. Figure 4b shows the F-N curve
obtained from the I-E curve of the ITO-coated VANA. This
curve shows a linear relationship after turn-on electric field
intensity, following the F-N equation, as indicated by the
red line. The turn-on electric field intensity is 2.0/pm,
which can be estimated where the slope of the F-N curve
changes. Figure 4c shows the field emission current sta-
bility of the ITO-coated VANA over a period of 3 min,
measured under a vacuum of 1.59 x 10 torr when the
electric field intensity (E) is 2.5 V/um.

In order to estimate the field enhancement factor, f, F-N
parameters are evaluated by linear fit of the red line in
Fig. 4b. The field emission is described by the F-N equa-
tion as follows [1, 13],
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Fig. 2 SEM images of a SU-8
VANA, b pyrolyzed carbon
VANA, and ¢ ITO-coated
VANA. d EDS result of ITO-
coated VANA

19 -

100 200 300 400 500 600 T7.00 B.00 900 1000 11.00 1200 13

Fig. 3 a Schematic view of the (a)
experimental setup, where a

Zyvex nanomanipulator is

employed in a SEM vacuum

chamber. b SEM image of the

Keithley 42‘0]0
(*) =

||

Current measurement

tungsten tip A and ITO-coated RN
L 4 i \
VANA with distance control by SEM yecuum ; ’
the nanomanipulator l Zyvex
oy nanomanipulator
7
Tungsten tip A | |
7
41 170 coated VANA V TungstentipB
(AN AR RNANANRRRNANRRANRRRET] !
-
\_ J

1E) =4t ey e~ ) ()

8¢*h ¢ 3h(PE)

where I, E, 8, ¢, A, ki, and m are the current, electric field
intensity, field enhancement factor, work function, area,
reduced Planck constant, and electron mass, respectively.
This equation explains the shape of the I-E curve in Fig. 4a
and can be modified as follows,

I b i1 > 1

(b = 6.83 x 103V—%ym—1) 2)

Note that —21.18 is the slope of the red line and —5.76
is the y-intercept of the red line in Fig. 4b. The estimated
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field enhancement factor of the ITO-coated VANA, f, is
3,078 when the work function of ITO is 4.5 eV [9]. The
measured value of the field enhancement factor is compa-
rable with previous research results of field emitters [4, 14,
15].

In summary, an ITO-coated VANA was fabricated by a
top-down method using modified conventional UV
lithography, and the field emission characteristics were
evaluated using a Zyvex nanomanipulator. The top—down
method offers many advantages including an economical
process, good fabrication reliability, and suitability for
mass production. The turn-on electric field intensity of the
ITO-coated VANA is about 2.0 V/um, and the estimated
field enhancement factor f is 3,078. These results show
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Fig. 4 a Field emission I-E curve of the ITO-coated VANA
measured under a vacuum of 1.59 x 107> torr. b Corresponding
F-N curve obtained from I-E curve. ¢ Field emission current stability

of ITO-coated VANA at 1.59 x 107> torr

T T

25 30

that the ITO-coated VANA is a very promising candidate
for vacuum electron field emission applications.
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