Spore Display Using *Bacillus thuringiensis* Exosporium Protein InhA

Park, Tae Jung¹, Soo-Keun Choi², Heung-Chae Jung², Sang Yup Lee¹,³, and Jae-Gu Pan²,⁴*

¹Department of Chemical and Biomolecular Engineering (BK21 Program), BioProcess Engineering Research Center, Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, Daejeon 305-701, Korea
²National Laboratory for Microbial Display, GenoFocus, Daejeon 305-811, Korea
³Department of Bio and Brain Engineering, and Bioinformatics Research Center, KAIST, Daejeon 305-701, Korea
⁴Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea

Received: February 28, 2008 / Revised: July 30, 2008 / Accepted: August 13, 2008

A new spore display method is presented that enables recombinant proteins to be displayed on the surface of *Bacillus* spores via fusion with InhA, an exosporium component of *Bacillus thuringiensis*. The green fluorescent protein and β-galactosidase as model proteins were fused to the C-terminal region of InhA, respectively. The surface expression of the proteins on the spores was confirmed by flow cytometry, confocal laser scanning microscopy, measurement of the enzyme activity, and an immunogold electron microscopy analysis. InhA-mediated anchoring of foreign proteins in the exosporium of *Bacillus* spores can provide a new method of microbial display, thereby broadening the potential for novel applications of microbial display.

Keywords: *Bacillus thuringiensis*, spore display, exosporium, InhA

The *Bacillus cereus* group, which includes *B. anthracis* and *B. thuringiensis*, is characterized by the presence of an exosporium, a loose-fitting outermost layer surrounding the spore’s outer coat [8, 24, 27]. The particular adherence and hydrophobic property conferred by the exosporium, which forms the initial host–pathogen contact, suggest that the exosporium may be significant to spore pathogenicity [27]. Several genes encoding exosporium proteins have already been identified from the *B. cereus* group [3], including *inhA* and *inhB* in *B. thuringiensis* [3, 7], a series of *exs* genes in *B. cereus* [28], and the *bcIA* gene in *B. anthracis* [26, 27].

Numerous researchers have also developed cell-surface engineering techniques for the display of heterologous proteins. Many of these strategies involve the fusion of target genes or partner genes encoding surface-anchoring motifs or outer-membrane proteins, followed by the expression of the heterologous protein in the relevant host cell. Experiments utilizing such cell-surface display systems have proven to be powerful tools for investigating important biomolecular interactions, including protein–protein, antigen–antibody, and enzyme reactions [6, 18]. In particular, microbial cell-surface display systems have shown great promise for the development of live-cell patterning [23], the high-throughput screening of peptide and antibody libraries [2, 4], live vaccine development [17, 19], bioconversion using whole-cell biocatalysts [11, 15], and biosorption [29]. In recent years, some researchers have focused on developing spore surface display techniques with *B. subtilis* spores, which have the advantages of being highly resistant to destructive environmental stimuli and having the ability to remain dormant for extended periods of time [9, 14, 19–21], in part due to the characteristics of the coat proteins that form the outer layers of the spores [3, 7]. The previously developed spore-display systems in *B. subtilis* have involved the fusion of target proteins to the outer-coat proteins, such as CotB, CotC, and CotG [8, 10, 13, 14, 19]. However, since the absence of any one coat protein or its modification by fusion with another protein can lead to incorrect assembly and structural alterations due to the coat protein network [12], it is anticipated that fusion with a loosely attached exosporium protein will not affect the structure and function of the spores. Yet, no previous study has examined the use of exosporium proteins as a fusion partner for spore display. Accordingly, this study reports on a novel system that enables recombinant proteins to be displayed on the surface of *B. thuringiensis* spores via C-terminal fusion to InhA, an exosporium protein that is expressed at the onset of sporulation [8, 14, 23, 28].

*Corresponding author
Phone: +82-42-860-4483; Fax: +82-42-860-4488;
E-mail: jgpan@kribb.re.kr
Bacterial Strains and Plasmids

All the bacterial strains and plasmids used in this study are listed in Table 1. All the polymerase chain reaction (PCR) experiments were performed using a PCR Thermal Cycler T1 (BioMetra, Germany) with a High Fidelity PCR System. The restriction enzymes and DNA-modifying enzymes were purchased from New England Biolabs (Ipswich, MA, U.S.A.). The DNA sequences of all the clones were confirmed using an automatic DNA sequencer (ABI Prism Model 377; Perkin Elmer, Waltham, MA, U.S.A.). The other general molecular biological experiments were all carried out following standard procedures [25].

For the cloning of the lacZ gene, an XbaI restriction site was introduced at the 5’ end of the oligonucleotide (5’-GGAATTC-ACGATATAAA-GCAGACCA-3’), which was then used as the forward primer. Meanwhile, an EcoRI restriction site and stop codon were introduced at the 5’ end of the oligonucleotide (5’-GAATTC-TCGAGTTATTTTGAACCCGACCCAA-3’), which was then used as the reverse primer. Thereafter, the lacZ PCR product including the XbaI and EcoRI restriction sites was ligated into the same site in pSD1, yielding pSD-LacZ.

The cloned plasmid was transformed into B. thuringiensis 4Q7 by electroporation, which was performed using a Gene Pulser (Bio-Rad, Hercules, CA, U.S.A.) at 200 μF. The DNA sequences of all the clones were confirmed using an automatic DNA sequencer (ABI Prism Model 377; Perkin Elmer, Waltham, MA, U.S.A.). The other general molecular biological experiments were all carried out following standard procedures [25].

The inhA gene containing its promoter was amplified by a PCR from the genomic DNA of B. thuringiensis subspecies kurstaki HD1 using the following two primers: 5’-ATAAGAATGCGGCCGCTACGTCTGGTACGATT-3’ (sites underlined) and 5’-GCTCTAGATTAATTAT-3’. The amplified fragments were then digested with the restriction enzymes NotI and XbaI (sites underlined) and cloned into pEGFP (Clontech, Mountain View, CA, U.S.A.) and pDG1728 (Bacillus Genomic Stock Center, Columbus, OH, U.S.A.) as templates, respectively.

Table 1. Bacterial strains and plasmids used in this study.

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Relevant genotypes</th>
<th>Reference or source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli JM109</td>
<td>F’traD36 proA+B+ lacIq Δ(lacZ)M15/Δ(lac-proAB)</td>
<td>ATCC® 53323</td>
</tr>
<tr>
<td>B. thuringiensis subsp. israelensis</td>
<td>4Q7, plasmidless mutant of B. thuringiensis var. israelensis harboring pTX14-1, pTX14-2, and pTX14-3</td>
<td>BGSC® 4Q7</td>
</tr>
<tr>
<td>B. thuringiensis subsp. kurstaki</td>
<td>HD1, wild-type isolate</td>
<td>BGSC 4D1</td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pEGFP</td>
<td>egfp, bla</td>
<td>Clontech®</td>
</tr>
<tr>
<td>pDG1728</td>
<td>bla, erm, spa, spoVG-lacZ</td>
<td>BGSC®</td>
</tr>
<tr>
<td>pS</td>
<td>cat</td>
<td>This study</td>
</tr>
<tr>
<td>pSD1</td>
<td>cat, inhA</td>
<td>This study</td>
</tr>
<tr>
<td>pSD-EGFP</td>
<td>cat, inhA, egfp</td>
<td>This study</td>
</tr>
<tr>
<td>pSD-LacZ</td>
<td>cat, inhA, lacZ</td>
<td>This study</td>
</tr>
</tbody>
</table>

*American Type Culture Collection, Manassas, VA, U.S.A.
Bacillus Genetic Stock Center, Columbus, OH, U.S.A.
Clontech, Mountain View, CA, U.S.A.
analyzed for their relative fluorescence intensity using an FL1 green fluorescence detector with a 530/30 nm bandpass filter, respectively. The mean value (M) indicates the mean fluorescence intensity obtained by the FL1 detectors.

Fluorescence Microscopy

The purified spores displaying EGFP were harvested by centrifugation at 10,000 × g for 1 min at room temperature, washed, and resuspended at ~ 1.0×10^8 CFU/ml in PBS. The EGFP-displaying spores were mounted on poly-L-lysine-coated glass slides (Ccl & Associates, Pearland, TX, U.S.A.) and analyzed under an LSM 510 confocal laser scanning microscope (Carl Zeiss, Germany). The samples were excited at 488 nm with an argon laser, and the images filtered with a long-pass 505 nm filter. All the final images were generated from 3–5 serial images made by automatic optical sectioning.

β-Galactosidase Activity

The purified β-Gal-displaying spores (~ 1.0×10^8 CFU/ml) and free-formed β-Gal (20 unit/ml) were combined to start the reaction. The reaction mixture also contained 3 µl of MgCl₂ (1 mM) and β-mercaptoethanol (45 mM), plus 267 µl of α-nitrophenyl-β-D-galactopyranoside (ONPG, 3 mM) dissolved in a 0.1 M sodium phosphate buffer (pH 7.5). After incubation at 37°C for 30 min, the reaction was stopped by the addition of 500 µl of 1 M Na₂CO₃, and the absorption of the liberated α-nitrophenol measured at 420 nm. One unit of β-Gal was defined as the amount of enzyme that hydrolyzed 1 µmole of ONPG to α-nitrophenol and D-galactose per minute per spore density (A₆₀₀) at 37°C.

Protease Accessibility

The β-Gal-displaying spores were purified and washed with a PBS buffer. The spores were then resuspended in PBS containing proteinase K, bacterial subtilisin, and pancreatic trypsin (Sigma) at 0.2 mg/ml, respectively. After incubation at 37°C for 30 min, the spores (~ 1.0×10^7 CFU/ml) were washed three times and resuspended in PBS. The residual enzyme activity of the remaining β-Gal-displaying spores was measured and a flow cytometry analysis performed as described above.

RESULTS AND DISCUSSION

Spore Display of Green Fluorescent Protein and β-Galactosidase

To test the InhA-mediated spore surface display, two model proteins, the monomeric EGFP and tetrameric β-Gal, were used. The detection of fluorescence was then used to monitor the expression level of EGFP fusion on the spore surface [13]. Since the surface display of active tetrameric β-Gal is generally regarded as impossible, as its monomer subunit has to be initially secreted from the cell and then assembled outside the cell, another objective of this study was to confirm the direct surface-display of active β-Gal.

To examine the targeting of the EGFP on the spore surface, the EGFP gene was fused to the C-terminal of inhA of B. thuringiensis, as described in the Materials and Methods section. EGFP-displaying B. thuringiensis spores were then prepared through urografin gradient centrifugation and analyzed by flow cytometry (Fig. 1A) and confocal microscopy (Fig. 1B). In the flow cytometry analysis, the fluorescence intensity of the purified EGFD-displaying spores that carried an InhA fusion protein was higher and
more uniform (Fig. 1A, grey peak) when compared with that of the *B. thuringiensis* 4Q7 as the negative control (Fig. 1A, black peak), indicating that the InhA–EGFP fusion was expressed as an active fusion protein and displayed on the spore surface. The difference in the fluorescence intensity between the control and the EGFP-displaying spores also corresponded to the amount of expressed InhA–EGFP fusion incorporated into the spore surface. To observe the surface-displayed EGFP directly, the EGFP-expressing *B. thuringiensis* 4Q7 spores were analyzed under a confocal microscope (Fig. 1B). Rod-shaped fluorescence from the EGFP was observed on the spores, thereby reconfirming the surface localization of the InhA–EGFP fusion protein on the surface of the *B. thuringiensis* spores. Specific fluorescence signaling of the spores was observed in the EGFP-displaying samples, indicating that the spore-displayed proteins were highly accessible to external reagents, like specific ligands and/or antibodies, allowing binding to the externally expressed EGFP on the spores and making them more likely to be externally exposed.

To determine whether the tetrameric β-Gal enzyme could be displayed in its active form on the surface of the spores, the recombinant *B. thuringiensis* cells were cultivated in DSM medium at 30°C. A sporulation efficiency of ~95% was typically obtained for the recombinant *B. thuringiensis* strains. The spores (~1.0×10⁶ CFU/ml) were collected from the cultures in the stationary phase by centrifugation using a urografin gradient (see Materials and Methods). The enzyme activity of the β-Gal displayed on the spores was about 4×10² U/g (dry weight) of spores based on the hydrolysis of ONPG. Notably, once the InhA-fused β-Gal was expressed and assembled on the spore surface, it was not detached or released into the buffer solution even after several days of incubation. Several physicochemical treatments, such as refrigerated storage, vigorous mixing, and ultrasonic vibration, did not detach the displayed β-Gal.

To confirm and analyze the spore-displayed β-Gal, a flow cytometry analysis was conducted (Fig. 2A). The nonspecific binding of an antibody using the hydrophobic properties of the *B. thuringiensis* spores led to an increase in the fluorescence intensity (red peak) when compared with that of *B. thuringiensis* 4Q7 as the negative control (black peak). Nonetheless, the fluorescence intensity of the purified spores displaying β-Gal showed the highest mean value (green peak). Furthermore, the β-Gal fusion proteins on the *B. thuringiensis* spores were vulnerable to proteinase K (blue peak), indicating that the β-Gal fusion protein was expressed on the spore surface as an active fusion protein.

To define the presence of β-Gal on the spore surface, the vulnerability of the β-Gal on the *B. thuringiensis* spores to several proteases was examined (Fig. 2B). The results revealed that the InhA-displayed β-Gal was vulnerable to several proteases, providing evidence that the β-Gal enzymes were exposed to the outer environment. It is also notable that the InhA-displayed β-Gal became more resistant to proteases than the free β-Gal, indicating that the enzymatic activity of the surface-displayed protein was maintained even under the presence of protease. Researchers have previously attempted to use the spores themselves as biocatalysts [20] and spore-displayed enzymes as a carrier of recombinant enzymes [16]. Thus, improving the resistance
towards proteases may facilitate the design of bioconversion processes [1].

Immunogold Analysis of Spore-Displayed Protein

Transmission electron microscopy (TEM) of the β-Gal-displaying *B. thuringiensis* spores exposed to gold colloid particles (10 nm) was used to observe the display more precisely (Fig. 3). The TEM analysis of the gold colloid-bound β-Gal-displaying spores yielded images of a balloon-like exosporium completely covering the *B. thuringiensis* spore (Fig. 3), indicating that the immunogold-bound exosporium had partially split off from the original spore, perhaps due to overgrowth of the artificial exosporium derived from the overexpression of the InhA–β-Gal fusion protein and a weakened structure of the exosporium caused by the fusion of the recombinant protein. Additionally, this phenomenon indicated that the fusion protein was vulnerable to attack by an InhA metalloprotease or mechanical damage during the sample preparation step for TEM imaging. Nonetheless, the images confirmed that the β-Gal fusion proteins were displayed on the surface of the spores.

It should also be noted that some trouble was experienced reproducing the EM results. This may have been due to the weak structure of the balloon-like exosporium, making the sample preparation difficult while maintaining the original structure of the *B. thuringiensis* spores. The fusion between the InhA and the target protein may also have been the underlying cause for the unstable structure of the exosporium. Another possibility is that fusing with InhA may affect the stability of the recombinant fusion protein, as InhA is a zinc metalloprotease, the major function of which is to selectively degrade antimicrobial peptides [5, 7]. Therefore, to further develop the present system, it is suggested that InhA could be improved by directed-mutagenesis of its protease-like domain.

This study presented a novel exosporium protein-based surface-display system on *B. thuringiensis* spores. Monomeric GFP and tetrameric β-Gal were both correctly displayed. As a delivery vehicle, the exosporium surrounding the

Fig. 3. Transmission electron microscopy (TEM) analysis of InhA-displayed spores using immunogold.

A. TEM image of control spores treated with β-Gal antibody and secondary gold-antibody. Scale bar represents 500 nm. B–C. Selected TEM images (80 kV, ×100,000) of InhA-displayed β-Gal. Scale bars represent 200 nm. D. TEM image (80 kV, ×30,000) of InhA-displayed β-Gal and split InhA-fused β-Gal bound with immunogold. Scale bar represents 500 nm. Gold nanoparticles (nominal diameter of 10 nm) were observed after sequential treatment with the monoclonal β-Gal antibody and secondary gold-conjugated antibody.
entire surface of spores provides a suitable surface for the display of heterologous proteins; thus, it is expected that the results of this study can be extended to other exosporium proteins, including other exosomal components in *B. thuringiensis*, the Exs series in *B. cereus*, and BcLA in *B. anthracis* [5, 26, 28]. Consequently, exosporum protein-based spore-display systems may prove useful in the development of an improved version of molecular display: covering the whole surface. *Bacillus* spores are resistant to solvents, extreme pHs and temperatures, and high concentrations of salt [22]. Therefore, by taking advantage of the natural robustness of these spores, the proposed spore-display system can be broadly applied to the fields of oral vaccines, whole-cell biocatalysis, high-throughput screening of protein libraries, and other applications [24].

Acknowledgments

This work was supported by the Korean Systems Biology Research Program (M10309020000-03B5002-00000) of the Korean Ministry of Education, Science, and Technology (T.J.P. and S.Y.L.), the IT Leading R&D Support Project from the Korean Ministry of Knowledge Economy through the Korean Ministry of Education, Science, and Technology Research Program (M10309020000-03B5002-00000) of the Korean Ministry of Education, Science, and Technology, the IT Leading R&D Support Project (T.J.P. and S.Y.L.), and the National Research Program (M10309020000-03B5002-00000) of the Korean Ministry of Education, Science, and Technology. This work was supported by the Korean Systems Biology Research Program (M10309020000-03B5002-00000) of the Korean Ministry of Education, Science, and Technology. The authors would also like to thank Hye Jin Choi for her assistance with the TEM imaging (Korea Basic Science Institute, Korea).

References