Annual IEEE International Computer Software and Applications Conference

Behavioral Dependency Measurement for Change-proneness Prediction
in UML 2.0 Design Models

Ah-Rim Han, Sang-Uk Jeon, Doo-Hwan Bae
Department of Computer Science, Korea Advanced Institute of Science and Technology
{arhan, sujeon, bae} @se kaist.ac.kr

Jang-Eui Hong
School of Electrical and Computer Engineering, Chungbuk National University
jehong @chungbuk.ac.kr

Abstract

During the development and maintenance of Object-
Oriented (OO) software, the information on the classes
which are more prone to be changed is very useful. De-
velopers and maintainers can make a more flexible soft-
ware by modifying the part of classes which are sensitive
to changes. Traditionally, most change-proneness predic-
tion has been studied based on source codes. However,
change-proneness prediction in the early phase of soft-
ware development can provide an easier way for develop-
ing a stable software by modifying the current design or
choosing alternative designs before implementation. To ad-
dress this need, we present a systematic method for calcu-
lating the Behavioral Dependency Measure (BDM) which
helps to predict change-proneness in UML 2.0 models. The
proposed measure has been evaluated on a multi-version
medium size open-source project namely JFreeChart. The
obtained results show that the BDM is an useful indica-
tor and can be complementary to existing OO metrics for
change-proneness prediction.

1. Introduction

Software engineering deals with the construction of mul-
tiversion software, that is, software that will undergo a
number of changes either to enhance the functionality or
to fix bugs [13]. Some parts of software may be more
prone to changes than others. The likelihood of changes
to be occurred is referred as change-proneness. Predicting
change-proneness can be very helpful in software develop-
ment phases because it indicates the design quality of the
software. If the modification of a class method exhibits a
large sensitivity to changes, the corresponding design has a
quality problem and needs to be improved by redesigning.

0730-3157/08 $25.00 © 2008 IEEE
DOI 10.1109/COMPSAC.2008.80

76

In addition, change-proneness prediction aids to allocate re-
sources of inspection and testing efficiently.

There have been several research efforts for predict-
ing change-prone classes in OO software based on source
codes. Code-based change-proneness prediction is used
at the maintenance phase. However, if the change-prone
classes can be predicted at the earlier phase in the software
development life cycle, when the design models become
available, design quality problems can be detected before
implementing codes; we can modify the current design or
choose alternative designs easily on design models. Thus,
model-based change-proneness gives a high return on in-
vestment partially because decisions made on design mod-
els have substantial downstream consequences and check-
ing and fixing design models are relatively inexpensive.
This is important since the largest percentage of software
development effort is spent on maintenance [12]. As a re-
sult, model-based change-proneness prediction would con-
tribute to improve software quality and save development
cost.

The main challenge of model-based change-proneness
prediction is to develop a method that can predict change-
prone classes effectively within limited information com-
pared to source codes. To predict change-proneness from
design models, we provide the Behavioral Dependency
Measure (BDM) based on the interactions between objects.
This measure can be used for ranking classes according to
the proneness that they are likely to be changed. We first
define behavioral dependencies which might cause changes.
Then, we describe the steps for calculating the BDM based
on the defined behavioral dependencies using UML 2.0 de-
sign models. The used diagrams are a Class Diagram (CD),
Sequence Diagrams (SD), and an Interaction Overview Di-
agram (IOD). The SD and IOD provide a scenario-based
behavior modeling. Alt, loop combined fragments used
in a SD enable to model complex control structures same

IEEE
computer
psouety

as in source codes. The 10D, newly introduced in UML
2.0, represents an overview of the control flow of the com-
plete software. The BDM is evaluated on a multi-version
medium size open-source project namely JFreeChart [2].
To investigate the effectiveness of the BDM for predict-
ing change-proneness, we reversed JFreeChart source codes
to UML design models and measured the BDM based on
them. Then, to measure the extent of changes, we extracted
the modified lines of code of each class in the next six re-
leases. We regressed these changes on the BDM and other
existing OO metrics to prove the usefulness of the BDM.

The rest of the paper is organized as follows: Section
2 defines the behavioral dependencies which might cause
changes and discusses some issues for accurate change-
proneness prediction. Section 3 describes how to calculate
the BDM in a systematic way. Section 4 presents a case
study as an evaluation of the proposed BDM. Section 5 de-
scribes related researches. Section 6 concludes and outlines
future research.

2. Change Prediction
2.1. Behavioral Dependency Definitions

Changes in a class occur in two ways: by modifica-
tions to a class itself and by changes propagated from other
classes. The changes which occur by the former, which we
call internal changes, refer to addition/deletion of attributes,
modification to method declarations, etc. However, they are
difficult to be predicted using design models; data such as
source lines of code (SLOC), number of fields (NOF), and
number of parameters (NOP) can be obtained from source
codes. Therefore, we only consider changes that occur by
the latter, which we call propagated changes. Such changes
can be predicted by examining dependencies of pairs of en-
tities (i.e., classes or objects) in the system. Among several
types of dependencies, we use a behavioral dependency.
We assume that the object sending a message has a be-
havioral dependency to the object receiving the message.
This is from the insight that modifying the object receiv-
ing the message may affect the object sending the message.
We also assume that a high intensity of a behavioral depen-
dency represents high possibility of changes to be occurred.
The rationale behind this assumption is that the more ex-
ternal services an object is dependent on, the more likely it
is that the class of which the object is an instance will be
changed. To quantify the behavioral dependency, we define
two kinds of behavioral dependencies: direct and indirect.
Each of them is defined as follows. Let a system consists of
the objects opy, opa, ..., 0pg, ..., OPr, ..., OPp.

Definition 1 (Direct behavioral dependency). The object
op; has a direct behavioral dependency to the object opo if

77

sDB

SDA J

[ot:c1 l [02:c2|[033]|

’ olcl I ’ 02:c2 I ’ 03:c3 I

04:.c4 H 05:¢5 I

b

>
|

E

Figure 1: An example of sequence diagrams

op1 needs some services of opy by sending a synchronous
message to ops and receiving a reply from ops.

Definition 2 (Indirect behavioral dependency). The ob-
ject opy has an indirect behavioral dependency to the ob-
ject op, when the following conditions are met; op; needs
some services of the object opy by sending a synchronous
message to ops, and subsequently op, needs services of the
object op, before replying to op;. op, may be op, or may
need some services of other objects before replying to ops,
and finally the service of op, is needed.

A synchronous message entails a dependency between
two objects since the sender object depends on the receiver
object. On the other hand, an asynchronous message does
not entail such dependency since the sender object does not
wait for a reply but continues to proceed. Therefore, in
our approach, we only regard synchronous messages with
replies.

Figure 1 shows two example SDs. In SD A, the object
ol has a direct behavioral dependency to the object 02 by
sending a synchronous message a to 02 and receiving a re-
ply from it. On the other hand, the object ol has an indirect
behavioral dependency to the object 03; before the object ol
receives a reply for the message a from the object 02, the
message b is sent from the object 02 to the object 03. The
asynchronous message e from the object ol to the object
02 does not entail a behavioral dependency since the sender
object ol does not wait for a reply from the object 02. All
the message in SD B incur direct behavioral dependencies.

Note that, an indirect behavioral dependency is not a
transitive relation. For example in Figure 1, the object ol
and o5 do not have a behavioral dependency, even though
the objects ol and 02 have a behavioral dependency by the
message a and the object 02 and o5 have a behavioral de-
pendency by the message f. This is because the message
f is sent from 02 to 05 after ol receives the reply of the
message a from 02. To identify the indirect behavioral de-
pendency between two objects precisely, we need to save
the information of the message which triggers the current
message. Hence, when ol has an indirect dependency to
02, we can derive a reachable path which is a sequence of

c6
+9()4
c1 c2 2
y A) B %+a() P
(ERS=0.8) || (ERS=0.2) J T :Z((;
c5 c3
+f0) +b()

(a) (b)

Figure 2: (a) An example of the interaction overview dia-
gram. (b) An example of the class diagram which is consis-
tent with SDs in Figure 1.

exchanged messages between the two objects by traversing
stored messages from 02 to ol in a backward direction.

2.2. Considerations for accurate prediction

There have been several researches for predicting
change-prone classes using established metrics of OO soft-
ware. However, for more accurate and consistent change-
proneness prediction, more considerations are needed. In
this paper, we consider the following issues.

First, established couplings based on method call depen-
dencies do not take account of the extent to which one class
is dependent on another class. In other words, no matter
how many times the class cl calls the method of the class
c2, the established couplings of static aspect treat this as
one. Let us consider two cases; the class c2 implements one
method called by the class c1 for 100 times while the class
c4 implements two methods called by the class c1 for once
of each method. The established static couplings for the for-
mer case and the latter case are one and two, respectively.
However, the class ¢l might be more behaviorally depen-
dent on the class c2 than the class c4. Hence, we consider
the dynamic aspect of coupling between objects by taking
not only the number of messages, but also the execution rate
of the messages based on the control structure and the oper-
ational profile. A SD in UML 2.0 provides combined frag-
ments to express control structures such as branch and loop.
A message in an alt combined fragment which corresponds
to a branch control structure can be executed depending on
the condition. This may affect the behavioral dependency of
the objects which are related by this message. Without run-
ning a program (i.e., dynamic information), it is not feasible
to determine whether the message will be executed or not.
Therefore, the probabilistic execution rate of a message is
considered when measuring a behavioral dependency. For
example, in the SD B of Figure 1, either the message a or
the message b is executed whether the condition is satisfied
or not (i.e., true or false). Therefore, the probabilistic execu-

78

N
Deriving all the Summing the number
Reachable Paths of weighted Reachable
forall object-pair ~ |Reachable| pathsforall class-pair
Ch Path Set J
OSBDGs Sum of the weighted
reachable paths for
 — (Synthesizing OBDGs into all class»papir
Object System Behavioral - - ~N
Calculating Behavioral
sD M Dependency Graph (OSBDG)
H Dependency Measure e
oBoGs | (BDM) for every class
in th t
Constructing Object [r e system ~
10D M Behavioral Dependency \J/ BDM for every class
Graph (OBDG) for each SD [Predicting change-proneness]

Figure 3: Overview of our approach for predicting change-
proneness.

tion rate of each message can be 0.5. The IOD in UML 2.0
illustrates an overview of a flow of control in which each ac-
tivity node can be a SD. Some scenarios (i.e., SDs) might be
executed more frequently than others, as specified in an op-
erational profile [10]. The operational profile provides the
expected execution rate of a SD. Therefore, it also needs
to be considered for measuring the better behavioral depen-
dency. We suggest to specify the Expected Execution Rate
(ERS) (i.e., operational profile) of each SD in an 10D. For
example, consider the IOD in Figure 2(a). It shows that the
expected execution rates of SD A and SD B are 80% and
20%, respectively.

Second, due to inheritance, when an object sends a mes-
sage to the other object, the class of the receiver object may
be different from the class implementing the corresponding
method. For example, in the SD B in Figure 1 and the CD in
Figure 2(b), the object ol sends the message g to the object
02. However, the actual implementation of the method g is
in the class ¢6 which is different from the class of the object
02. Hence, the change of the method g in the class c6 is
propagated to the class c¢1. Without considering the inher-
itance, the behavioral dependency would be misidentified.
For this reason, when a sender object sends a message to a
receiver object, we check whether the method of the mes-
sage is implemented in the class of the receiver object or in
one of its ancestor classes.

3. Behavioral Dependency Measurement

In this section, we provide a systematic way for calculat-
ing the BDM in UML design models which are SD, CD, and
IOD. An overview of our approach is depicted in Figure 3.
BDM is computed from the following procedures. Object
Behavioral Dependency Graph (OBDG) is constructed for
each SD based on all direct and indirect behavioral depen-
dencies between objects by referring the CD and the IOD.
After that, we synthesize all OBDGs into Object System
Behavioral Dependency Graph (OSBDG) for the whole sys-
tem. Next, we derive all the reachable paths for each pair of

objects in the system from the OSBDG. A reachable path
is weighted by a distance between objects and an execu-
tion rate of the messages composing of this reachable path.
Then, we sum a number of weighted reachable paths for all
pairs of classes. Finally, we calculate BDM for every class
in the system. Detailed procedures are described in the fol-
lowing subsections.

3.1. Constructing OBDG and OSBDG

A dependency graph OBDG 4 for a SD A is a 2-tuple
{O, M}, where

e O is a set of nodes representing objects in the SD

e M is a set of edges representing messages that are
exchanged between two nodes. A message m € M
represents a synchronous message with a reply, which
entails a direct dependency from a sender object to a
receiver object. It has following 6 attributes.

— ms € O is the sender of the message.
— m, € O isthe receiver of the message. m,. # m
— m,, is the name of the message.

— my € M is the instance of a backward navigable
message. m, # m. “-” means none.

— Mmumer 1s the probabilistic message execution rate
in a sequence diagram. 0 < My, < 1. Default
value is 1.

— Mmumep 18 the expected message execution rate in
an interaction overview diagram. 0 < Mg <
1. Default value is 1.

ms and m,. represent the sender and receiver objects, re-
spectively. Since we do not consider messages from an ob-
ject to itself, they should not represent the same node. As
we pointed in Section 2.2, the class of the object receiving
a message may be different from the class implementing
the corresponding method. In other words, the object may
send the message which is the method of the superclass of
the class of the object receiving the message. In such case,
the object sending a message may change when the actual
implemented method changes. Therefore, when binding a
receiver node, we make sure whether the method is imple-
mented in the actual class of the receiver object. If not, the
receiver node of the message is bound to an object of an
ancestor class which actually implements the method.

my, represents the message that triggers m, and is called
as the backward navigable message. By tracing the back-
ward navigable message, we can identify the message that
activates the current message. As we noted in Section 2.2,
my, is essential for identifying indirect behavioral depen-
dencies between objects. my, also prevents an infinite loop
problem when deriving a reachable path from the OSBDG.

79

Mumer, and mo,. 7 help to predict change-proneness bet-
ter by considering the probabilistic or expected execution
rates of the messages as mentioned in Section 2.2. Later,
these rates are synthesized according to a reachable path
to be used for measuring a behavioral dependency. m,er,
represents the probabilistic message execution rate in a SD.
We consider a branch control structure which might affect
the probability of the message execution. When a message
is in an alt combined fragment, it is executed only when a
condition of the corresponding interaction operand is met.
Therefore, m,,.r, is the same as the probability that one of
the interaction operands is selected. If an alt combined frag-
ment is nested, the probability of message execution in the
corresponding combined fragment is multiplied to m,er,
recursively. When a message is not contained in any com-
bined fragments, M1, 1S 1. m,o i represents the expected
message execution rate in an IOD. We specify the ERS (i.e.,
operational profile) of each SD in an IOD. A message in
a SD is executed only when the corresponding SD is ac-
tivated. Therefore, m . is the same as the probability
that the control flow of the software is reached to the SD to
which the message belongs. This can be obtained by mul-
tiplying all the values of ERS on the way from the initial
node to the corresponding SD node in the IOD. If a SD is
always to be activated, m,. g of all the messages in the SD
are 1.

Figure 4(a) shows two OBDGs, each of which corre-
sponds to the SD A and the SD B, respectively, in Fig-
ure 1. The ERS value of each SD is presented in Figure
2(a). Figure 2(b) illustrates the CD of objects showed in
these SDs. Each message is represented as the form of
M (M, Muner,, Mmerr). In the OBDG g, to distinguish
the messages from those in the OBDG 4, we renamed the
message a to a’ and b to b'. Since either the message o
or b’ may be activated depending on the condition of the
alt combined fragment, the a], ., and b/, are 0.5, respec-
tively. The ERS values of the SD A and the SD B are re-
flected into the messages’ execution rates. Note that, the
receiver node of the message g is 06, since c6 implements
the method g.

To determine the behavioral dependencies between ob-
jects in the whole system, we synthesize OBDGs into the
OSBDG = {0, Ms}. O, and M, denote the set of ob-
jects and the union of messages existed in the system, re-
spectively. The method for constructing the OSBDG will
be explained using the example in Figure 4. 4(b) shows
the OSBDG by synthesizing two OBDGs in Figure 4(a).
This OSBDG is composed of O5; = {01,02,..,06} and
My = {(M of SD A) U (M of SD B)}. Note that, the ob-
ject ol in SD A and the object ol in SD B are instantiated
from same class c1, therefore only one o1 is remained in the
OSBDG. The sending message a from ol in SD A and the
other sending message o’ from ol in SD B are connected

OBDGg

a'(-,0.5,o.2
b'(-,0.5,0.2)
g(—,1,0.2)

OBDGA
¢(b,1,0.8).

b(a,1,0.8) @

d(a,1,0.8) @
8)

f(-.1,0.

a(-,1,0.8)

(a)

0OSBDG

9(-,1,0.2)

Figure 4: (a) OBDG,4 and OBDGp correspond to SD A
and SD B in Figure 1. (b) OSBDG after synthesizing two
OBDGs in (a).

with the corresponding target object 02 in the OSBDG. If
the message m is triggered by the other message in the con-
text of the system by examining the IOD, we set this other
message as a backward navigable message of the message
m. There is no such case in this example.

3.2. Deriving Reachable Paths

We derive reachable paths for all pairs of objects in the
system using OSBDG. To retrieve the reachable paths from
a source object ol to a target object 02, we start travers-
ing of the OSBDG from an incoming message of 02 to an
outgoing message of ol in a back direction. When o1 has
a direct behavioral dependency to 02, one of the incoming
messages of 02 and one of the outgoing messages of ol are
equal so that this message is added into a set of reachable
paths. On the other hand, when o1 has an indirect behav-
ioral dependency to 02, we traverse the OSBDG from one
of the incoming messages of 02 iteratively by substituting
a backward navigable message for it and finally reach to
one of the outgoing messages of ol. A stored sequence of
messages during traversing is a reachable path. An exam-
ple of the reachable path set from ol to o3 in Figure 4(b) is
{ab,b’}. The method for retrieving reachable paths from an
object o1 to the object 02 is presented in Algorithm 1.

3.3. Calculating Behavioral Dependency
Measure

Prior to calculate BDM for every class in the system,
we sum the number of weighted reachable paths for all pair
of classes. Let RPS be a set of all reachable paths in the
system and s be one reachable path in the set. f denotes

80

Algorithm 1 ReachablePathSet(01:0, 02:0)

input OUT « outgoing message set of ol

input /N « incoming message set of 02

input RP < () an array for storing reachable path

input RP.S < () a vector for saving a set of reachable paths
output RPS

for all in € IN do
for all out € OUT do
if in == out then
/*For RPS by the Direct Behavioral Dependency*/
RPS «— RPS U {in}
else
/*For RPS by the Indirect Behavioral Dependency*/
RP «— RP + {in}
while in;! = out && iny! = () do
if in == out then
RP «— RP + {inp}
RPS «— RPSURP
RP 0
break
else
RP «— RP + {inp}

in < ing

the first message in the reachable path s, in other words,
the outgoing message from the sender object. We formalize
the sum of the number of weighted reachable paths (WRP)
from class c1 to class c2 as follows.

>

Vs€RPS(01,02)

SUmWRP(Cl, 62) = DF(S) X fnLeH X f’ﬂLeL

We use three items for weighting a reachable path: DF,
Mmer and mg,.r. We denote a distance factor by
DF(s) = 1/d, where d is the distance length which is the
number of messages in the corresponding reachable path s.
The rationale for using the distance factor is that an indirect
behavioral dependency might be weaken as it is occurred
by the successive calls. In other words, the farther an object
is from the source of changes, the less the object is likely
to be changed. Therefore, we need to degrade the impact
when two objects have a long distance of indirect behav-
ioral dependency.

Finally, BDM for every class in the system is obtained as
follows. Let C' denote all the classes in the system.

BDM(cl) = > SumWRP(cl,cy)
Ve, €C

Table 1 summarizes the sum of the number of weighted
reachable paths obtained from the OSBDG in Figure 4(b)
and BDM of each class. BDM is used in predicting change-
proneness; the higher BDM the class has, the larger the like-
lihood to be changed.

Table 1: Sum of the number of weighted reachable paths
of all class-pair and BDM of each class (Row: Receiver,
Column: Sender)

cl c2 c3 c4 ¢5 | 6 | BDM(c)
cl 0 0.81 | 0.41 | 0.67 0 0.2 2.09
c2 0 0 0.8 1.2 0.8 0 2.8
c3 | 0 0 0 0.8 0 0 0.8
cd | 0 0 0 0 0 0 0
c5 | 0 0 0 0 0 0 0
c6 | 0 0 0 0 0 0 0

4. Case Study

This section presents the results of a case study whose
objectives are to provide an empirical validation of the
BDM presented above. The first subsection explains in
more detail of the studied system, the experimental goal,
and the method we follow. In the next subsection, results
are presented and interpreted.

4.1. Experiment Design

To calculate the BDM which is measured on UML mod-
els, we developed a tool, BADAMO (BehAvioral Depen-
dency Analyzer of UML MOdels). The BADAMO is built
on EMF (Eclipse Modeling Framework), and imports the
UML 2.0 models in the format of XMI generated from Ra-
tional Software Architect (RSA) 7.0 which is Eclipse-based
UML 2.0 modeling tool by the Rational Division of IBM. In
order to investigate whether the BDM is statistically related
to change-proneness, we need the case system which has
well-documented UML models and subsequent releases for
extracting change related information. However, in prac-
tice, most legacy systems which had been developed and
maintained for a long time do not have design documents.
Therefore, to perform our experiment, we reversed the ex-
isting system, JFreeChart[2](version 1.0.0) to the UML de-
sign models using a reverse engineering tool with manual
supports. JFreeChart is an open-source Java class library
for generating various types of charts. It has been developed
for about seven years. There are 43 releases (at the time we
conducted this case study) between the first version 0.5.6,
released on 1 December 2000, and the last version 1.0.6,
released on 15 June 2007. When reversing the UML mod-
els from the JFreeChart codes, we only extracted the infor-
mation which is needed for calculating the BDM. We ex-
cluded classes which have behavioral dependencies from/to
the library, since the scope of the measurement is limited
to the application classes of JFreeChart. In addition, inter-
nal messages (i.e., method call within same class) were not
considered, since they do not occur behavioral dependen-
cies. A SD was simply constructed based on consecutive

81

/| NavigablePatn2203

g =]] divzn D D =}

1: getChipvalue
[condition==true] 1.1: getvalue

[condition==true]

1: getvalue
(] 2 getvalve

12: getvalue
2: gelChipvalue:

Figure 5: A sequence diagram reversed from source codes
of the JFreeChart version 1.0.0

synchronous calls, which corresponds to the notion of the
reachable path. Figure 5 shows an example of the reversed
sequence diagram. This SD corresponds to the reachable
path from the object of the class WaterMapPlot to the
object of the class De fault KeyedV alues with three mes-
sages. We extracted 5659 reachable paths by analyzing the
source codes of JFreeChart, and finally obtained 5659 SDs
with 12563 messages. The IOD can not be reversed from
source codes; it is specified only from the early stage of
the development to help developers get an overview of the
system. Thus, this information is not reflected when imple-
menting codes. Hence, in this experiment, the ERS in an
IOD was not considered when calculating the BDM. The
CD was built automatically using RSA 7.0.

Stepwise multiple regression was used to build the
change-proneness prediction models. The dependent vari-
able of the model is change-proneness. The change-
proneness in this study is the total amount of changes
(source lines of code added and deleted) across the six re-
leases from version JFreeChart 1.0.0 to version JFreeChart
1.0.6. Change data was collected for each application class.
Since it is not feasible to predict the change-proneness
of the newly created class, we only consider changes of
the 369 classes which have been existed from version
JFreeChart 1.0.0. Based on the change data, we used the
Source Code Counter [1] to compute the amount of changes
of each class. The independent variables include the Chi-
damber and Kemerer (C&K) metrics [9] and the BDM.
C&K metrics are most widely used metrics for evaluating
an object-oriented software. We choose the 6 metrics that
are available on UML models from C&K metrics: NOC
(number of children), DIT (depth of inheritance tree), WMC
(weighted methods per class), RFC (response for a class),
CBO (coupling between objects), and LCOM (lack of cohe-
sion in methods). The independent variables are measured
on version JFreeChart 1.0.0 that is the first release of the
studied system.

A primary goal of this case study is to investigate
whether the BDM is an useful indicator and is additional

and complementary to existing C&K metrics for explain-
ing variance of change-proneness. To achieve this goal, we
proceeded in two steps. First, we carried out stepwise mul-
tiple regressions using C&K metrics in order to generate a
multivariate regression model that would serve as a baseline
of comparison. We then continued by performing stepwise
multiple regression, using C&K metrics, and the BDM. If
the goodness of fit of the latter model turns out to be sig-
nificantly better than the former model, we would then be
able to conclude that the BDM is the useful and additional
explanatory variable for change-proneness prediction.

4.2. Results

The first result of the stepwise regression when using
C&K metrics as candidate covariates is presented in Fig-
ure 6(a). After removing 7 outliers that are clearly over-
influential on the regression results (with an extremely large
change value), we obtained the prediction model with 3
variables included. The model explains around 56 percent
of the variance of the data set and shows an adjusted R? of
0.55. WMC, CBO and LCOM were the first, second and
last variables to be included, respectively. When includ-
ing BDM in addition to C&K metrics to make a prediction
model, we obtain the result as in Figure 6(b). Around 64
percent of the variance in the data set is explained and an
adjusted R? of 0.64 is obtained. In this latter model, WMC,
BDM, CBO, LCOM, NOC variables were included in the
order of the sequence as listed. Note that, BDM was the
second variable to be included with significant-level of p-
value < 0.00001. Therefore, even when accounting for the
difference in the number of covariates, the coefficient of de-
termination (R2) is increased by 9 percent or 20 percent
of the unexplained variance (from 0.55 to 0.64) by using
BDM. This results support the usefulness of BDM which
is a complementary indicator to C&K metrics as far as
change-proneness is concerned. In other words, this shows
the importance of considering the behavioral dependency of
the system which uses the inheritance and polymorphism to
predict change-proneness.

The fitness of the models for the model-based change-
proneness prediction is rather low compared to code-based
change-proneness prediction, since the information ex-
tracted from UML models is not enough as from source
codes. If other metrics which are derivable from only source
codes are considered when building the change-proneness
prediction model, the R? values will be higher. For exam-
ple, LOC which indicates the size of the class is known as a
significant indicator for affecting change-proneness [3]. Re-
call that the goal of this study is to determine whether BDM
helps to obtain a better model fit, therefore, provides the
improved predictive model compared to the model consid-
ering only C&K metrics which are available on UML mod-

82

Coefficients with Error Bars Coeff. t-stat p-val

NOC — 2.84325 1.7194 0.0864
DIT -1.76555 -0.6719 0.5021
WMC - 2.69983 14.6858 0.0000
8o —— 2.67381 5.6984 0.0000
RFC - -0.352029 -1.2967 0.1956
Lcom . -0.416265 -3.3761 0.0008

Coeff. t-stat p-val

Noc — 3.66851 2.3862 0.0175
DIT | - 1.21297 0.4914 0.6234
wMC | —— 0.609115 1.9408 0.0531
CBO [—— 3.23123 7.2421 0.0000
RFC [- -0.0815212 -0.3187 0.7502
Lcomf * -0.430373 -3.7409 0.0002
BDM [] 0.0376379 7.7577 0.0000
-4 -2 0 2 4 6

()

Figure 6: Results of stepwise regression using (a) C&K
metrics, (b) C&K metrics and BDM.

els. This provides the benefit of the early change-proneness
prediction, when a design model becomes available, with-
out implementing the codes.

5. Related Work

Previous attempts to predict change-proneness classes
are associated with the studies for assessing the external
quality factors such as maintainability, flexibility, change-
ability, and stability of OO software [4, 7, 12, 8]. How-
ever, model-based change-proneness prediction is rarely
discussed whereas there have been rich algorithms and tools
for source code level prediction [14]. Arnold and Bohner
[5] give an overview of several formal models of change
propagation. They introduce several tools and techniques
that are based on code dependencies and algorithms such as
slicing and transitive closure. In [11], a set of algorithms
that determine what classes are affected by a given change
is proposed. The methodology represents a system as a set
of data dependency graphs.

There are studies that investigate the relationship be-
tween existing design metrics such as coupling measures
and the impact of changes. Briand et al. [6] empirically in-
vestigated whether coupling measures are related to ripple
effects using a commercial OO system. The aim is to rank
classes according to their probabilities of containing ripple
effects when a change is occurred on one class, while our
approach aims at quantifying the degree of dependencies

between classes to predict the change-proneness of classes
in a future generation. In addition, traditional coupling
measures fail to capture complex dependencies due to the
inheritance and the polymorphism. This results in poorer
precision of change-proneness prediction for the software
that uses inheritance and polymorphism to improve internal
reuse in a system. In our work, we take account of the actual
call dependency between objects by finding the class which
implements the method being called. Arisholm et al. [3]
investigates the use of dynamic coupling measures as indi-
cators of change-proneness. Their approach is based on cor-
relating the number of changes, a continuous variable which
represents change-proneness, to each class with dynamic
coupling measures and other class-level size and static cou-
pling measures. However, dynamic coupling requires ex-
tensive test suites to exercise the system. Such test suites
may not be readily available. We use the direct/indirect be-
havioral dependencies statically. In other words, we con-
sider probabilistic and expected execution rate of messages
based on the control structure and the operational profile
without running a program.

6. Conclusion and Future Work

In this paper, we proposed the model-based behavioral
dependency measurement between classes in UML 2.0
models of OO software for change-proneness prediction.
We first provide definitions of the behavioral dependencies.
Then, we suggest a systematic approach for calculating the
BDM based on the defined behavioral dependencies. In
the case study, the BDM has been shown to be an useful
and complementary indicator compared to the model us-
ing only C&K metrics for change-proneness prediction. A
model-based change-proneness prediction using BDM has
several advantages, even the goodness of the model fit could
be lower than code-based change-proneness prediction. At
the early stage of the development, model-based change-
proneness prediction provides a way of developing a stable
and flexible software by helping the decision-making of de-
sign decisions or modifying current designs. It is much eas-
ier and cost-effective than reworking on the implemented
system. Furthermore, it can be used in visualizing the spots
of the changes, which would greatly improve the under-
standability of the software.

Some of our future works include: (1) extending BDM to
take into account other dependency attributes such as time
and impact. (2) investigating other applications of BDM
such as fault-proneness prediction and object allocation in
a distributed system. (3) visualizing change-prone classes
on the modeling tool which is RSA. (4) confirming BDM’s
usefulness by applying it on the system which uses much of
the inheritance and polymorphism.

83

ACKNOWLEDGEMENT

This research was supported by the MKE(Ministry of
Knowledge Economy), Korea, under the ITRC(Information
Technology Research Center) support program super-
vised by the IITA(Institute of Information Technology
Advancement)(IITA-2007-(C1090-0701-0032)) and this
work was partially supported by Defense Acquisition Pro-
gram Administration and Agency for Defense Development
under the contract.

References

Practiline Source Code Line Counter.

http://sourcecount.com/.
JFreeChart, 2005. http://www.jfree.org/jfreechart.
E. Arisholm, L. Briand, and A. Foyen. Dynamic coupling

measurement for object-oriented software. [IEEE Transac-
tion on Software Engineering, 30:491-506, 2004.

J. Bieman, A. Andrews, and H. Yang. Understanding
change-proneness in OO software through visualization. In
Proceedings of the 11th IEEE International Workshop on

Program Comprehension, pages 44-53, 2003.

S. Bohner and R. Arnold. Impact analysis - towards a
framework for comparison. In Proceedings of the Inter-
national Conference on Software Maintenance, pages 292—
301, 1993.

L. Briand, J.Wurst, and H. Lounis. Using coupling measure-
ment for impact analysis in object-oriented systems. Pro-
ceedings of the International Conference on Software Main-

tenance, pages 475-482, 1999.

M. Chaumun, H. Kabaili, R. Keller, and F. Lustman. A
change impact model for changeability assessment in object-
oriented software systems. volume 45, pages 155-174. El-
sevier, 2002.

K. Chen and V. Rajich. RIPPLES: tool for change in legacy
software. In Proceedings of the IEEE International Confer-

ence on Software Maintenance, pages 230-239, 2001.
S. Chidamber, C. Kemerer, and C. MIT. A metrics suite for

object oriented design. Software Engineering, IEEE Trans-
actions on, 20(6):476-493, 1994.

M. Gittens. The Extended Operational Profile Model
for Usage-based Software Testing. Library and Archives
Canada Bibliothéque et Archives Canada, 2005.

L. Li, A. Offutt, and A. LLC. Algorithmic analysis of the im-
pact of changes to object-orientedsoftware. In Proceedings
of the International Conference on Software Maintenance,
pages 171-184, 1996.

N.Tsantalis, A. Chatzigeorgiou, and G. Stephanides. Pre-
dicting the probability of change in object-oriented systems.
IEEE Transaction on Software Engineering, 31:601-614,

2005.
D. L. Parnas. Some software engineering principles. pages

257-266, 2001.
F. Xia. A change impact dependency measure for predicting

the maintainability of source code. In Proceedings of the
28th Annual International Computer Software and Applica-
tions Conference, volume 2, 2004.

(1]
(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

