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Abstract

In this paper, we propose a new hybrid model of artificial neural networks (ANNs) and genetic algorithm (GA) to

optimal feature transformation and feature weighting. Previous research proposed several variants of hybrid ANNs and GA

models including feature weighting, feature subset selection and network structure optimization. Among the vast majority of

these studies, however, ANNs did not learn the patterns of data well, because they employed GA for simple use. In this study,

we incorporate GA in a simultaneous manner to improve the learning and generalization ability of ANNs.

In this study, GA plays role to optimize feature weighting and feature transformation simultaneously. Globally

optimized feature weighting overcome the well-known limitations of gradient descent algorithm and globally optimized

feature transformation also reduce the dimensionality of the feature space and eliminate irrelevant factors in modeling ANNs.

By this procedure, we can improve the performance and enhance the generalisability of ANNs.
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1. Introduction

It has been widely accepted that most financial

variables are non-linear. Recently, artificial neural

networks (ANNs) are applied to the problem of finance

rapidly, such as stock market prediction, bankruptcy

prediction, corporate bond rating, etc. Several studies on

stock market prediction using artificial intelligence (AI)

techniques were performed during past decades. Stock

market prediction was typical problem of financial time-

series prediction. Prior studies used various types of

ANNs to predict accurate stock index and direction of

change.

One of the earliest studies, Kimoto et  al. (1990)

used several learning algorithms and prediction methods

for the Tokyo stock exchange prices index (TOPIX)

prediction system. Their system used modular neural

network to learn the relationships among various factors.

Kamijo and Tanikawa (1990) used recurrent neural

network and Ahmadi (1990) used backpropagation neural

network with generalized delta rule to predict the stock

market. Yoon and Swales (1991) also performed



prediction using qualitative and quantitative data. Some

researchers investigated the issue of predicting stock index

futures market. Trippi and DeSieno (1992) and Choi et al.

(1995) predicted daily direction of change in S&P 500

index futures using ANNs. Duke and Long (1993)

executed daily prediction of German government bond

futures using feedforward backpropagation neural network.

Recent research tends to include novel factors and to

hybridize several AI techniques. Hiemstra (1995)

proposed fuzzy expert systems to predict stock market

returns. He suggested that ANNs and fuzzy logic could

capture the complexities of the functional mapping

because they do not require the functional specification of

the function to approximate. A more recent study of

Kohara et al. (1997) incorporated prior knowledge to

improve the performance of stock market prediction. Tsaih

et al. (1998) integrated the rule-based technique and the

ANNs to predict the direction of the S&P 500 stock index

futures on a daily basis.

They, however, did not produce outstanding

prediction accuracy partly because tremendous noise and

non-stationary characteristics in stock market data.

Training ANNs tend to be difficult with high noisy data

then the network fall into a naive solution such as always

predicting the most common output (Lawrence et al.,

1996).

For this reason, several studies proposed various

kinds of hybrid models improve the learning ability of

ANNs. Past research proposed several learning and search

techniques to hybridize with ANNs such as MDA (Lee et

al., 1996), ID3 (Lee et al., 1996), genetic algorithm (GA)

(Harp and Samad, 1991; Schaffer et al., 1992; Park et al.,

1994; Ornes and Sklansky, 1997; Yang et al., 1998;

Sexton et al., 1998a). Lee et al. (1996) also used self-

organizing feature map and Sexton et al. (1998b) used

tabu search as a hybridizing method.

In this paper, we propose a new hybrid model of

ANNs and GA for optimal feature transformation and

feature weighting. Previous researches proposed several

variants of ANNs and GA hybrid models such as feature

weighting, feature subset selection and network structure

optimization. The vast majority of these studies, however,

ANNs did not learn the patterns of data well because they

employed GA for simple use. GA approach, however, can

potentially be used to optimize multiple factors of the

learning process. In this study, we use GA to optimize

multiple factors of learning process to improve the

generalisability of ANNs. First, GA play a role to optimize

feature weighting of ANNs. Feature weighting includes

the notions of feature subset selection and the optimization

of network structure. The majority of ANNs rely on a

gradient descent algorithm to optimize the connection

weights of network. Gradient descent algorithm, however,

often did not produce generalized model because of well-

known limitations. Second, this study adopts feature

transformation based on GA. Because data preprocessing

is an essential step for knowledge discovery and eliminate

some irrelevant and redundant features, many researchers

in society of data mining have a broad interest in feature

transformation (Liu and Motoda, 1998). In many

applications, the size of data is so large that learning of

pattern may not work as well. Reducing and transforming

the irrelevant or redundant features shortens the running

time of a learning model and yields more generalized

results (Dash and Liu, 1997). Feature transformation, in

this study, is to transform continuous values into discrete

ones in accordance with optimized threshold through

genetic search. This approach effectively filters data, trains

the classifier, and extracts the rules easier from the

classifier. In addition, it reduces the dimensionality of the

feature space then not only decreases the cost and times in

the operation of the classifier but also enhances the

generalisability of classifier.

The rest of the paper is organized into five



sections. The next section reviews feature weighting and

feature transformation methodologies. In the third section,

we propose simultaneous optimization method for feature

transformation and feature weighting in ANNs using GA

and describe the benefits of proposed approach. In the

fourth section, we describe the design of this research and

execute experiments. In the fifth section, empirical results

are summarized and discussed. In the following section,

conclusions and research implications are presented with

the assessment of our approach.

2. Feature weighting and feature
transformation for ANNs

For a long time, there have been much research

interests to predict future. Among them, several amount of

research to predict future using data mining techniques

including ANNs. ANNs have preeminent learning ability,

however, often confront with inconsistent and

unpredictable performance. As mentioned earlier, because

data preprocessing is an essential step for knowledge

discovery and eliminate some irrelevant and redundant

features, many researchers in society of data mining have

a broad interest in feature transformation and subset

selection (Liu and Motoda, 1998). It is especially

important to optimize network structure of ANNs. Feature

subset selection and network structure optimization is

partly reflected by the feature weighting in the process of

modeling ANNs.

Feature weighting means, in this study, optimizing

the connection weight vectors of ANNs. The vast majority

of ANNs studies rely on a gradient descent algorithm to

get the weight vector of the model. Sexton et al. (1998a)

pointed out the fact that the gradient descent algorithm,

however, applied to complex nonlinear optimization

problems often resulted in inconsistent and unpredictable

performance. Their indication stems from the fact that

backpropagation is a local search algorithm and may tend

to become fell into local minimum.

Several research have attempted to address this

problem, Sexton et al. (1998a) stated as the use of the

momentum, restarting training at many random points,

restructuring the network architecture, and applying

significant constraints to the permissible forms can fix it.

They suggested that one of the more promising directions

is using global search algorithms to search the weight

vector of network instead of local search algorithm

including backpropagation.

Some ANNs research advocated global search can

improve performance. Sexton et al. (1998a) employed GA

first to search the weight vector of ANNs. They compared

backpropagation with GA and resulted each GA derived

solution was superior to the corresponding

backpropagation solution. Sexton et al. (1998b) also used

tabu search to optimize the network, tabu search derived

solutions were significantly superior to those of

backpropagation solutions for all test data in the resulting

comparison. In another paper, Sexton et al. (1999) again

incorporated simulated annealing, one of the global search

algorithms, to optimize the network. They compared with

the solution derived by GA and simulated annealing and

concluded solution with GA outperformed that with

simulated annealing.

Although the effort of Sexton and his colleagues,

Shin et al. (1998) concluded that ANNs are trained by

gradient descent algorithm outperform GA in their

application of bankruptcy prediction. In this paper, we

result that GA solution cannot always guarantee the

superior performance than ANNs are trained with gradient

descent algorithm.

Feature transformation is the process of creating a

new set of features (Liu and Motoda, 1998). It differs from

feature subset selection in that the latter does not generate

new features and it selects a subset of original features



(Blum and Langley, 1997; Dash and Liu, 1997). Feature

transformation methods are classified as endogenous

(unsupervised) versus exogenous (supervised), local

versus global, parameterized versus non-parameterized,

and hard versus fuzzy (Scott et al., 1997; Susmaga, 1997).

Endogenous (unsupervised) methods do not take into

consideration of the value of the decision attribute while

exogenous (supervised) do. Local methods discretize one

attribute at once while the global ones discretize all

attributes simultaneously. Parameterized methods specify

the maximal number of intervals generated in advance

while non-parameterized methods determine it

automatically. Hard methods discretize the intervals at the

cutting point exactly while fuzzy methods discretize it by

overlapping bounds (Susmaga, 1997). The methods of

endogenous feature transformation include discretization

using a self-organizing map (Lawrence et al., 1996),

percentile method (Scott et al., 1997; Buhlmann, 1998),

clustering method (Scott et al., 1997; Kontkanen et al.,

1997). Basak et al. (1998) also proposed neuro-fuzzy

approach using feature evaluation index and Piramuthu et

al. (1998) suggested decision-tree based approach as an

endogenous method. These methods have the advantage of

simplicity in transformation process. While they do not

give consideration to the correlation among each

independent and dependent variables. Prediction

performance, however, is enhanced by the ability of

discrimination from not only single variable but also the

association among variables. For the reason of above

limitation, endogenous methods do not provide an

effective way of forming categories (Scott et al., 1997).

On the other hand, the methods of exogenous feature

transformation include maximizing the statistical

significance of Cramer’s V between other dichotomized

variable (Scott et al., 1997), entropy minimization

heuristic in inductive learning and k-nearest neighbor

method (Fayyad and Irani, 1993; Ting, 1997; Martens et

al., 1998). Exogenous methods also include functional

links found by genetic algorithm (GA) for ANNs and C4.5

(Haring et al., 1997; Vafaie and De Jong, 1998). These

methods transform an independent variable to maximize

its association with the values of dependent and other

independent variables.

3. Feature transformation by GA for
ANNs

Data analysis using statistical method or AI

technique includes trend prediction and pattern

classification. Trend prediction usually treats single or

multiple time-series data with continuous type as input

variables. It aims to capture temporal patterns between the

time lag of historical data. The examples of trend

prediction are the prediction of stock price, interest rate,

and economic indices. They were traditionally analyzed by

linear regression or time-series analysis such as

autoregressive integrated moving average process

(ARIMA). Pattern classification such as bond rating and

credit evaluation, however, usually employs multiple

cross-sectional data with discrete and continuous type as

input variable. It aims to grasp the causality between the

data simultaneously.

As mentioned above, it is very important to

consider the temporal patterns between data on time lag

when analyzing the time-series data using ANNs. A

temporal pattern, however, is difficult to train because the

multi-layer perceptron has the risk of learning the

unnecessary random correlation and noise, because it has

an outstanding ability of fitting. Weigned et al. (1991)

used weight-elimination and Jhee and Lee (1993) used

recurrent neural network to prevent the overfitting

problem. In addition, time-series prediction requires a long

computational time because it uses a large number of

complex relationships.



Because many fund managers and investors in stock

market generally accept and use criterion in Table 1 as the

signal of future market trend. Therefore, they interpret

technical indicator not by continuous measure but by

qualitative term. Even if an attribute represents a

continuous measure, the experts usually interpret the

values in qualitative terms as bullish and bearish or low,

medium and high. For ‘stochastic %k’, the value of about

75 is basically accepted by stock market analysts as strong

signal, when the value exceeds about 75, the market is

regarded as an overbought situation or bullish market. On

the other hand, if it drop below 25, it is considered as

oversold situation or the signal of bearish market. When

the value of ‘stochastic %k’ is placed between about 25

and 75, it is regarded as the signal of neutral market

(Edwards and Magee, 1997). Table 1 reviews

interpretation threshold for technical indicator in stock

market.

<Table 1> Interpretation threshold (Murphy, 1986; Achelis,

1995; Gifford, 1995; Chang et al., 1996; Edwards and

Magee, 1997; Choi, 1995)

The optimum interpretation threshold, however, vary

depending on the security being analyzed and overall

market condition (Achelis, 1995). Because each market

has their specific threshold for interpreting, we do not

have general guidelines for discretizing threshold. We may

optimize the threshold for discretizing continuous measure

into qualitative norm to capture domain specific

knowledge. Althogh several research suggested various

methods of transforming features, we propose

discretization of continuous time-series data using GA as a

method of feature transformation. This approach

effectively filters data, trains the classifier. In addition, it

reduces the dimensionality of the feature space then not

only decreases the cost and time in the operation but also

enhances the generalisability of classifier. It also reflects

domain specific knowledge of each feature from

optimized interpreting threshold. This method discretize

search space into discrete categories. Because feature

transformation using GA is classified as exogenous, global,

parameterized, and hard method, it may find near-optimal

threshold of discretization for maximum prediction

performance.

4. Simultaneous optimization method
using GA for ANNs

The overall framework of simultaneous optimization

method is shown in Figure 1. The process of optimizing

the feature weights and threshold for feature

transformation consists of three stages.

For the first stage, we search optimal connection

weights and thresholds for feature transformation. In

search process of GA, the parameters for searching must

be encoded on chromosomes as decision variables. GA is

a search algorithm based on survival of the fittest among

string structures to form a search algorithm (Goldberg,

1989). For solution of optimization problems, GA has

Achelis

(1995)

Gifford

(1995)

Edwards

and Magee

(1997)

Murphy

(1986)

Chang et

al. (1996)

Choi

(1995)

Stochastic %K 20/80 30/70
20~25

/75~80
30/70 25/75 20/80

Stochastic %D 20/80 30/70
20~25

/75~80
30/70 25/75 20/80

Stochastic

slow %D
20/80 30/70

20~25

/75~80
30/70 25/75 20/80

Momentum -6.5/+6.5 0

ROC -6.5/+6.5 100

LW %R 20/80 20/80 20/80 10/90 20/80

AD OSC
0.5 or

0.2/0.8

Disparity 5 days 100%

Disparity 10 days 100%

OSCP 0 0

CCI -100/+100 -100/+100 -100/+100
0 or

 –100/+100

0 or

–100/+100

RSI 30/70 30/70
20~30

/70~80
30/70 30/70 30/70



been investigated recently and shown to be effective at

exploring a complex space in an adaptive way, guided by

the biological evolution mechanisms of reproduction,

crossover, and mutation (Adeli and Hung, 1995).

Figure 1. Simultaneous optimization method

In order to improve the performance of AI

techniques, GA is usually employed (Harp and Samad,

1991; Schaffer, et al., 1992; Park et al., 1994). For ANNs,

GA is usually employed to select neural network topology

such as optimizing relevant feature subset, determining the

optimal number of hidden layer and nodes, etc.

This study needs three vectors of parameters, first

is connection weight vectors between input and hidden

layer of network and second set is connection weight

vectors between hidden and output layer. The third set is

the threshold for feature transformation of each feature.

Encoded connection weights and thresholds are optimized

to maximize the fitness function. Fitness function is the

average prediction accuracy rate of the test data set. The

parameters are optimized using only the information about

training data. Derived parameters from optimization

process are applied to out-of-sample data. Because ANNs

have eminent ability of learning the known data, the model

may fall into overfitting with the training data. Therefore,

the average prediction accuracy rate of test data is used as

fitness function to avoid it. In this stage, GA operates the

process of crossover and mutation on initial chromosomes

and iterates until the stopping conditions are satisfied.

The second stage is the process of feedforward

computation in ANNs. In this process, sigmoid function is

used as activation function. This function is a popular

aactivation function to model ANNs, because it can easily

be differentiated. Linear function is used as combination

function for feedforward computation with derived

connection weight from first stage. In the third stage,

derived connection weights and thresholds of feature

transformation are applied to out-of-sample data. Table 2

summarizes the algorithm of simultaneous optimization

for feature transformation and weighting.

<Table 2> The algorithm of simultaneous optimization for

feature transformation and weighting

5. Research design and experiments

The research data used in this study  are technical

indicators and corresponding direction of change in daily

Korea stock index (KOSPI). The total number of samples

includes 2928 trading days from January, 1989 to

December, 1998. The direction of daily change in stock

index are categorized as “0” or “1”, “0” means next day’s

GA

Fitness function

Evaluation

Transform the input vector

Crossover
 Mutation

Optimized threshold

Crossover
 Mutation

Optimized weight vector

Assign the input weight vector

Assign the hidden weight vector

ANNs

Step 0 Initialize the populations (connection weights and thresholds for
feature transformation).
(Set to small random values between 0.0 and 1.0)

Step 1 While stopping condition is false, do Steps 2 – 9.

Step 2 Do Steps 3 – 8.

Step 3 Each input processing element receives input signal xi and

forwards this signal to all processing elements in hidden layer.

Step 4 Each processing element in hidden layer sums its weighted input

signals and applies sigmoid activation function to compute its

output signal of hidden processing element and forwards it to all

processing elements in output layer .

Step 5 Each processing element in output layer sums its weighted signals

from hidden layer and applies sigmoid activation function to

compute its output signal of output processing element and

computes the difference between output signal of output

processing element and target value.

Step 6 Calculate fitness.

Step 7 Select individuals to become parents of the next generation.

Step 8 Create a second generation from the parent pool.

(Perform crossover and mutation.)

Step 9 Test the stop condition.



index diminish than today’s index, and “1” represent next

day’s index increase than today’s index. We selected 12

technical indicators as feature subset by the review of

domain experts and past research. Table 3 gives selected

features and their formulas.

<Table 3> Technical indicators ( Achelis, 1995;

Gifford, 1995; Chang et al., 1996; Edwards and Magee,

1997; Choi, 1995)

Note) C: Closing price, L: Low price, H: High price, MA:

Moving average of price, M t : ( )
3

ttt CLH ++ ,

SM t :
n

M
n

i
it∑

=
+−

1
1 , D t :

n

SMM
n

i
tit∑

=
+− −

1
1 , Up:

Upward price change, Dw: Downward price change

Table 4 presents summary statistics for each

feature.

In order to compare the effectiveness of

simultaneous optimization method with other competitive

method, we organize three different sets of method

according to feature weighting and transformation method.

First method trains ANNs with gradient descent algorithm.

The backpropagation algorithm and sigmoid function are

used in this model. Second method trains ANNs with

weights are optimized by GA instead of gradient descent

algorithm. Unlike first method, GA searches among the

several sets of weight vectors simultaneously. In the third

model, GA simultaneously optimizes the weights of ANNs

and the thresholds of feature transformation.

<Table 4> Summary statistics

For the controlling parameters of GA search, the

population size is set to 100 organisms and the crossover

and mutation rates are changed to prevent falling into the

local minimum. The range of crossover rate is set between

0.5 and 0.7 and mutation rate is ranged from 0.05 to 0.1 in

this study. As a stopping condition, only 5000 trials are

permitted. The ranges of search space of connection

weights are set from –5.0 to 5.0. The range of thresholds

for feature transformation is permitted between maximum

and minimum value of each feature.

The data used in this study are split into three sets of data.

The first set is training set. This set is used to develop the

model and to determine the connection weights of

networks. The test set is the second one, this set measures

how well the model interpolates using the derived

connection weights through the learning process of

training set. The validation set is the third one, this set

Feature Names of feature Formulas

X1 Stochastic  %K
C L
H L

t n

n n

−
−

× 1 0 0

X2 Stochastic %D % K

n

t i
i

n

−
=

−

∑
0

1

X3 Stochastic slow %D
n

D
n

i
it∑

−

=
−

1

0

%

X4 Momentum 4−− tt CC

X5 ROC (rate of change)
C

C
t

t n−
× 100

X6 LW %R 100×
−
−

nn

tn

LH
CH

X7 A/D Oscillator
H C
H L

t t

t t

−
−

− 1

X8 Disparity 5 days
100

5

×
MA

C t

X9 Disparity 10 days
100

1 0

×
MA

C t

X10 OSCP (price oscillator)
5

1 05

MA
MAMA −

X11 CCI (commodity channel index) ( )
( . )

M SM
D

t t

t

−
×0 015

X12 RSI (relative strength index)

nDw

nUp

n

i
it

n

i
it

∑

∑
−

=
−

−

=
−

+

−

1

0

1

01

100
100

Name of feature Max Min Mean
Standard

Deviation

Stochastic %K 100.007 0.000 45.407 33.637

Stochastic %D 100.000 0.000 45.409 28.518

Stochastic slow %D 99.370 0.423 45.397 26.505

Momentum 102.900 -108.780 -0.458 21.317

ROC 119.337 81.992 99.994 3.449

LW %R 100.000 -0.107 54.593 33.637

AD OSC 3.730 -0.157 0.447 0.334

Disparity 5 days 110.003 90.077 99.974 1.866

Disparity 10 days 115.682 87.959 99.949 2.682

OSCP 5.975 -7.461 -0.052 1.330

CCI 226.273 -221.448 -5.945 80.731

RSI 100.000 0.000 47.598 29.531



used to validate the generalisability of the model for

unseen data. The process of extracting the test set from the

training set is particularly important in the development of

effective model (Klimasuaskas, 1994). In this study, the

test sets are extracted by random sampling. The number of

cases in each set is shown in Table 5.

<Table 5> Number of cases in each data set

6. Experimental Results

Three sets of model are compared according to

feature weighting and feature transformation method.

Table 6 describes the average prediction accuracy of each

model. The first set (such set called “Conventional

method” in Table 6) assigns connection weights of ANNs

using gradient descent method and transforms feature

space by linear scaling to the range between 0.0 and 1.0.

The first set is conventional method to model ANNs. The

second set (such set called “Simple optimization method”

in Table 6) assigns connection weights by optimization

process of GA and transforms feature space using linear

scaling to the range from 0.0 to 1.0. This model was

proposed by the works of Sexton et al. (1998a) and Shin et

al. (1998). In the third set (such set called “Simultaneous

optimization method” in this study), GA simultaneously

assigns connection weights and the thresholds of feature

transformation.

In Table 6, simultaneous optimization method has higher

prediction accuracy than the other two methods by 12% ~

13% at out-of-sample data. The prediction accuracy of

conventional method and simple optimization method is

similar to each other. It is worth giving attention to the fact

that there is a shade of difference of prediction accuracy

between in-sample data (training sample and test sample)

and out-of-sample data for simultaneous optimization

method. There is, however, a wide difference of prediction

accuracy between in-sample and out-of-sample data for

other two methods.

<Table 6> Average prediction accuracy (%)

In Table 6, simultaneous optimization method has

higher prediction accuracy than the other two methods by

12% ~ 13% at out-of-sample data. The prediction accuracy

of conventional method and simple optimization method is

similar to each other. It is worth giving attention to the fact

that there is a shade of difference of prediction accuracy

between in-sample data (training sample and test sample)

and out-of-sample data for simultaneous optimization

method. There is, however, a wide difference of prediction

accuracy between in-sample and out-of-sample data for

other two methods.

We use the McNemar tests to examine whether the

performance of simultaneous optimization method is

significantly higher than that of other two methods. The

McNemar test is nonparametric test for two related

Set 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Total

Training 162 163 163 165 165 165 164 164 163 163 1637

Test 70 70 71 71 72 72 71 71 71 71 710

Validation 57 58 58 58 59 59 58 58 58 58 581

Conventional

method

Simple optimization

method

Simultaneous

optimization

method

Year
In-

sample

Out-of-

sample

In-

sample

Out-of-

sample

In-

sample

Out-of-

sample

1989 59.05 48.28 57.33 49.12 56.04 63.16

1990 62.23 49.15 59.23 56.90 63.95 62.07

1991 58.97 53.45 53.42 50.00 60.26 63.79

1992 61.02 51.72 60.17 44.83 62.29 56.90

1993 54.01 44.07 54.43 44.07 59.07 62.71

1994 62.45 64.41 61.18 59.32 64.98 66.10

1995 63.83 44.83 63.83 53.45 65.96 67.24

1996 61.28 60.35 61.70 50.00 65.11 68.97

1997 46.15 50.00 50.43 50.00 62.82 63.79

1998 55.98 51.72 56.84 48.28 60.68 63.79

Total 58.50 % 51.81 % 57.86 % 50.60 % 62.12 % 63.86 %



samples. This test may be used with nominal data and is

particularly useful with before-after measurement of the

same subjects (Cooper and Emory, 1995). Table 7 shows

the results of McNemar tests to compare the performance

of three methods for out-of-sample data.

<Table 7> McNemar values (P values) for the pairwise

comparison of performance among methods (* significant

at the 1% level )

As shown in Table 7, the performance of

simultaneous optimization method performs significantly

better than that of other two methods at a 1% level. Also

Table 7 shows that the other two methods, conventional

method and simple optimization method, are not

significantly outperforms with each other.

Table 8 shows the optimized thresholds for feature

transformation. Each threshold is used as criteria for

dicretizing the continuous data.

7. Conclusions and research implications

Previous study such as Sexton et al. (1998a, 1998b,

1999) and Shin et al. (1998) had tried to optimize the

controlling parameters of ANNs. Their studies only focus

on the optimization of connection weights for ANNs. GA

approach, however, can potentially be used to optimize

other specific factors of ANNs.

<Table 8> Average thresholds for feature

transformation

In this paper, we present the simultaneous

optimization method for feature transformation and

weighting of connections in ANNs using GA to predict the

pattern of stock market trends. This method discretizes the

original data according to optimal or near-optimal

thresholds of feature transformation and assigns optimal or

near-optimal connection weights simultaneously. We show

that simultaneous optimization method effectively filters

data, trains the classifier, optimizes connection weights. In

addition, we conclude simultaneous optimization method

reduces the dimensionality of the feature space then

enhances the generalisability of classifier from the

empirical results.

These results support following findings. First, the

result of experiment with the simultaneous optimization

method significantly outperforms that with simple

optimization method in this study. It appears that

simultaneous optimization method allows better to learn

noisy patterns than simple optimization method. The

implications of this result partly support  that the more

factors of the process of ANNs are optimized by GA

simultaneously, the higher the prediction performance.

The simultaneous optimization method can enhance the

generalisability of models.

Second, although Sexton et al. (1998a) suggested

Conventional

method

Simple

optimization method

Simultaneous

optimization method

Conventional

method

0.227

(0.634)

19.347*

(0.000)

Simple

optimization

method

31.912*

(0.000)

Name of feature First threshold Second threshold

Stochastic %K 32.1346 67.7126

Stochastic %D 34.7457 66.2435

Stochastic slow %D 28.8129 64.5794

Momentum -12.4254 17.1770

ROC 98.4868 103.6160

LW %R 33.4142 81.9412

AD OSC 0.3333 0.7132

Disparity 5 days 98.9056 102.6326

Disparity 10 days 98.4584 102.2129

OSCP -0.9347 0.7172

CCI -38.7281 90.9651

RSI 33.3030 70.8495



simple optimization method for connection weights using

GA outperform conventional back-propagation neural

networks with gradient descent algorithm, this study does

not find a evidence to support their conclusion. We show

that the result of conventional method and simple

optimization method does not have significant difference

between each other. The reasons of these disappointing

result are summarized as two factors. The one is generic

limitation of GA. In other work of Sexton et al. (1999),

performance with the connection weights of ANNs are

optimized by simulated annealing, one of the global search

algorithm, did not outperform that with back-propagation

neural networks with gradient descent algorithm. This

result is also supported by the work of Shin et al. (1998).

They concluded the reason of disappointing results comes

from the fact that GA is less competent in local search. As

mentioned earlier, global search is more desirable for

learning ANNs, however, some times local search is also

needed. The other factor is maybe a “curse of

dimensionality”. GA is a global search algorithm, however,

financial data including the data of stock market is too

complex to search at once. Therefore, it is needed to

reduce the dimensionality of data and irrelevant factors

before searching. It is supported by the results of Table 6,

simple optimization method and conventional learning

method are not generalized well, however, simultaneous

optimization method is generalized well for out-of-sample

data. These results show global search algorithm may be

an alternative method for the learning in ANNs. It does

not generalize the fact that global search always provide

the optimal connection weights.

Third, from the Table 1 and Table 8, we find

optimized thresholds for feature transformation is

approximate some of domain knowledge in stock market.

As mentioned earlier, analysts in stock market do not

understand the technical indicators as continuous form but

interpret as qualitative norm such as low, medium, and

high. The majority of thresholds for feature transformation

in Table 8 is coincident with domain knowledge of stock

market are shown in Table 1 except for some indicators

including “Momentum”, “CCI”, and “OSCP”. Therefore,

feature transformation can not only reduces noise and

irrelevant factors but also provides domain knowledge to

learning process.

Simultaneous optimization method in this study

has several implications. Features in modeling ANNs

contribute the value of network outputs through not only

sole but also synergistic way. The connection weight of

specific connection in ANNs reflects the importance of

specific connection. It is computed by taking into

consideration of the value of dependent and the

association of other independent features. The contribution

of each feature to output value is can not be fully reflected

by connection weights. Connection weights provide

synergistic effect of the association among several features,

however, may do not reflect the pure embedding

knowledge of each feature. The pure embedding

knowledge of each feature can be reflected by qualitative

norm as mentioned above. It is closely akin to the process

of human thinking.

This study has some limitations. First, the number

of categories for feature transformation of each feature is

limited to three categories. The number is varied with the

nature of each feature. This study limits the number

because the computational burden of unlimited categories

is too heavy to be efficiently executed by personal

computer. The second limitation is the objects for

optimization are focused only two factors of the process of

ANNs. Simultaneous optimization method in this study

produces valid results, however, GA can potentially be

used to optimize several factors of the process of ANNs

including feature subset selection, network structure

optimization, learning parameter optimization. We also

believe that there is great potential for further research



with simultaneous optimization method using GA for

other AI techniques including case-based reasoning and

decision tree.
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