Synthesis and Polymerization Behavior of Cp*Ti(2-pyridinecarboxylato)2Cl: A New Cp/non-Cp Hybrid Catalyst for Polyethylene with Multimodal Molecular Weight Distribution

Sungjin Park, Younggyu Han,† Seong Kyun Kim, Junseong Lee, Hwa Kyu Kim, and Youngkyu Do*

Department of Chemistry, School of Molecular Science-BK21 and CMDS, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea. *E-mail: ykdo@kaist.ac.kr
†Polyolefin Research Institute, LG Chem, Ltd./Research Park, Daejeon 305-380, Korea

Received February 1, 2005

Key Words : 2-Pyridinecarboxylate, Titanium, Catalysts, Polyethylene, Multimodal

The discovery of homogeneous single-site catalysts for olefin polymerization has brought a revolution in polymer synthesis since the homogeneous catalysts-based polymers can possess excellent physical properties or stereo-regularities that are difficult or impossible to be achieved by other known polymerization methods. For example, metallocene-based polyethylene (PE) shows excellent properties such as high clarity and high impact strength, aroused from narrow molecular weight distribution (MWD) and a lack of branching.1,2 But, these factors essential for the excellent physical properties are also responsible for the poor processibility of PE, hampering bulk production of the polymer. Thus, the enhancement of the processibility of metallocene-based PE without losing its excellent properties has become an important research subject in recent years with a particular focus on modulating MWD3-5 and introducing branches.6

The incidental observation of catalytic systems that gave PE with broad MWD is uncommon.7 But the control of MWD of PE has been approached by using a series of reactors under different polymerization conditions,3 employing different catalytic systems in one pot4 and designing metallocene precatalytic systems that can produce multi catalytic species during the polymerization process.5 The concept embodied in the design of the foregoing metallocene precatalytic systems includes Lewis acid-base interaction in dialkylamino substituted ansa-metallocene,5a in situ generation of different isomers for non-Cp type catalyst5c and the stepwise dissociation of chelate ligand in half-metallocene catalyst.5b To date, the attempt to modulate MWD of PE based on the coupled use of those concepts has not been reported. Thus, we have developed a new Cp/non-Cp hybrid catalytic system that produces PE with multimodal MWD by employing 2-pyridinecarboxylate, a potential chelate ligand8 with multi Lewis base centers of N and O atoms, as a non-Cp ligand.

The complex 1 was synthesized via HCl elimination reaction in high yield (80%) as outlined in Scheme 1 and fully characterized.9 The molecular structure of 1 is displayed in Figure 1 and the selected interatomic distances and angles are given as part of the figure caption. Both 2-pyridinecarboxylate ligands in 1 behave as bidentate chelates with N and O donor centers. The compound 1 was examined as a catalyst for ethylene polymerization in the presence of MMAO (3A type from TOSOH AKZO Co.) (Table 1). The 1/MMAO system shows polymerization activity of 10-10² KgPE/(mol of Ti)·h·bar and produces high density polyethylenes. The observed PDI values are very different from around 2 generally observed for single site catalysts.

Scheme 1. Reaction route for the compound 1.

Figure 1. ORTEP drawing of the compound 1, showing 50% probability thermal ellipsoids and atom labeling. Hydrogen atoms and the solvate CH2Cl2 were omitted for clarity. Selected bond lengths (Å) and angles (°): Ti(1)-O(1) 1.992(2), Ti(1)-O(3) 1.997(3), Ti(1)-Cp centroid 2.122, Ti(1)-N(1) 2.306(3), Ti(1)-N(2) 2.231(3), Ti(1)-Cl(1) 2.3771(13), O(1)-Ti(1)-N(1) 73.21(10), O(3)-Ti(1)-N(1) 79.75(10), N(2)-Ti(1)-N(1) 74.05(11), N(1)-Ti(1)-Cl(1) 75.77(8).
temperature dependent modulation of MWD of PEs.

As active centers for ethylene polymerization, leading to the show different thermal stabilities and therefore can serve to rule out MWD modulation in the system, leaving Lewis acid-base interaction and the stepwise dissociation of a chelate ligand have been ascribed to the observed concepts. As stated in the introduction, three concepts such as Lewis acid-base interaction, the stepwise dissociation of a chelate ligand as possible causes for the contribution of complex I/MMAO at various temperature (runs 5-8 in Table 1); C.H. in Y axis = Concentration Height, Log M in X axis = Log (Molecular Weight); – : observed, ... deconvoluted.

distributions. 

Table 1. Ethylene polymerizations with I/MMAO

<table>
<thead>
<tr>
<th>Run</th>
<th>Tp</th>
<th>α/μM</th>
<th>A°</th>
<th>Mw</th>
<th>Tm</th>
<th>PDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>30</td>
<td>2000</td>
<td>Trace</td>
<td>88,440</td>
<td>136.49</td>
<td>3.66</td>
</tr>
<tr>
<td>2nd</td>
<td>50</td>
<td>2000</td>
<td>120</td>
<td>43,420</td>
<td>133.56</td>
<td>4.51</td>
</tr>
<tr>
<td>3rd</td>
<td>70</td>
<td>2000</td>
<td>96</td>
<td>72,930</td>
<td>135.32</td>
<td>3.96</td>
</tr>
<tr>
<td>4th</td>
<td>90</td>
<td>2000</td>
<td>Trace</td>
<td>15,900</td>
<td>93.32</td>
<td>4.51</td>
</tr>
<tr>
<td>5th</td>
<td>30</td>
<td>2000</td>
<td>45</td>
<td>170,700</td>
<td>137.28</td>
<td>5.80</td>
</tr>
<tr>
<td>6th</td>
<td>50</td>
<td>2000</td>
<td>63</td>
<td>128,68</td>
<td>7.83</td>
<td></td>
</tr>
<tr>
<td>7th</td>
<td>70</td>
<td>2000</td>
<td>Trace</td>
<td>35,100</td>
<td>128.68</td>
<td>7.83</td>
</tr>
<tr>
<td>8th</td>
<td>90</td>
<td>2000</td>
<td>Trace</td>
<td>43,520</td>
<td>–</td>
<td>8.48</td>
</tr>
</tbody>
</table>

*Polymerization condition: P(ethylene) 1 bar; Ti 2 μmol; solvent 50 mL of toluene-d8; t 5 min; 3Ti 5 μmol; 3 KgPE/(mol of Ti)·h·bar

Figure 2. GPC diagrams of polyethylenes produced with the complex I/MMAO at various temperature (runs 5-8 in Table 1); C.H. in Y axis = Concentration Height, Log M in X axis = Log (Molecular Weight); – : observed, ... deconvoluted.

Figure 3. Possible species from the reaction of the complex I and MMAO.

The reaction of the precursor I with MMAO could result in the formation of species such as I, II, III, IV and V shown in Figure 3. Certainly, the species III and IV include the concepts of Lewis acid-base interaction and the stepwise dissociation of the chelate ligand. Among those, all species except I have vacant sites for incoming monomers, are likely to show different thermal stabilities and therefore can serve as active centers for ethylene polymerization, leading to the temperature dependent modulation of MWD of PEs.

The I/MMAO catalytic system produces PEs with multi-modal MWD. The modulation of MWD can be explained in terms of the coupled use of Lewis acid-base interaction and the stepwise dissociation of 2-pyridinecarboxylate ligand.

Acknowledgement. The authors gratefully acknowledge financial supports from the KOSEF (R02-2002-000-00057-0), CMDS and the BK 21 Project.

Supplementary Material Available. Crystallographic data for the structure reported here have been deposited with the Cambridge Crystallographic Data Centre (Deposition No. CCDC 249165). These data can be obtained free of charge via www.ccdc.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

References

9. Compound I: 80% yield H-NMR CDCl3, 400 MHz): 8.84 (d, H, C5N4)), 8.42 (d, H, C5N4)), 8.07 (d, H, C5N4)), 7.89 (t, H, C5N4)), 7.81 (d, H, C5N4)), 7.64 (t, H, C5N4)), 7.18 (t, H, C5N4)), 5.27 (s, 2H, CH2Cl2), 2.03 (s, 15H, C5H15)). 15°C 1H NMR CDCl3, 400 MHz): 8.16, 16, 18 (COO), 150.83, 147.34, 146.57, 145.69, 140.62, 134.45, 130.12, 125.89, 124.45 ((C5N4)), 134.45 ((CMe4)), 53.40 ((CH2Cl2)), 129.8 ((C2H2)), Elemental Analysis, C5H12Ti(C5H5N4)2(Cl)2C6H4Cl2: Cald. C 50.43, H 6.00, N 5.11; Found: C 49.70, H 4.77, N 5.11. MS: m/z = 462 (M′), 427 (M′-Cl), 339 (M′-C5H5NClCOO), 327 (M′-C5H4Cl).

X-ray crystallographic data: Crystal system = Triclinic, space group = P11, a = 9.322(3) Å, b = 12.819(5) Å, c = 20.631(7) Å, alpha = 89.932(7) deg. beta = 89.897(6) deg. gamma = 86.080(7) deg. R1 = 0.0539.