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Abstract

This paper treats a practical method to generate task

strategies applicable to chamferless and high-precision
assembly. The difficulties in devising reliable assembly
strategies results from various forms of uncertainty such as
an imperfect knowledge of the parts being assembled and
limitations of the devices performing the assembly.
Our approach to cope with this problem is to have the robot
learn the appropriate control response to measured force
signals, that is, the mapping relation between sensing data
and corrective motion of robot, through iterative task
execution,

In this paper, the strategy is acquired by using a
learning algorithm and represented with a binary tree type
database. Experiments are carried out by taking account of
practical prodution facilities, It is shown by experimental
results that an ideal mapping is acquired effectively by
using the propused method and the assembly task is carried
out smoothly.

1, Introduction

The peg-in-hole assembly problem is still the important
subject of many investigations in the robotics field. In
particular, the insertion of a peg into a chamfered hole can
be readily carried out with the aid of RCC(Remote Center
Compliance ) installed in an industrial robot[1]. But in the
case of nonchamfered and high-precision parts mating, only a
few applications were implemented successfully by use of
special hardware such as a vibratory equipment[2].

The purpose of this paper is to develop Automated Robotic
Assembly Systea(ARAS) that guarantees successful assembly
tasks for the nonchamfered and high-precision parts with the
minimum use of the special hardware and commercially
available components.

Since a human being can easily perform insertion of parts
with small clearance with one’s eyes closed, it seems
evident that the human insertion is based on the reaction
forces created by the contact of the parts.

In fact, in the case of chamfered parts, the assembly tasks
have been successfully performed using RCC, under the
condition that the peg is in or partly in the hole. In other
words, RCC can be regarded as a kind of mapping which
correlates force/moment signals with the desired motion. On
the other hand, it is well known that chamferless insertion
task requires multiple mappings which must be selected in
accordance with the contact configurations(3]. In order to
develop rellable assembly strategies for the insertion of a
peg into a nonchamfered hole, it is necessary to identify
contact configurations through which the parts must pass
during assembly{4). Another approach to this problem is to
constrain the assembly to some allowable subset of contact
configurations for which a solution can be found[5].
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ARAS, which we will develop in this paper, depends on the
actual engineering practice. ARAS is established through
practice in the real task environment vhich consists of an
industrial robot, a force sensor, and small clearance
partsiat a clearance level 0.01 mm). Namely, ARAS is
constructed and executed according to a given assembly
environment.

In general, there may be possibly two pieces of methodology
to solve the assembly problem. One is the feedback gain
method by servo control, based on explicit control law.
Since 1hey should be acquired in advance through the
kinematic or dynamic analysis, this method is limited by its
own form, The other, the logical branching wethod,
represents corrections of motion by a set of IF-THEN
rules(ve call them skills) in which conditions of sensor
signals are evaluated and appropriate actions are selected
in accordance with the sensory information. Though this
sethod produces slow, intermittent actions, it allows us to
deal with the asseably problem without complete kinematic or
dynamic analysis of task.

The method we will develop allows the robot by itself to
learn IF-THEN rules through iterative implementation. The
proposed learning mechanism dose not require an explicit
representation of control strategies. The strategies for
decision-making, that is, the set of IF-THEN rules are
learned through iteratively collecting desired input-output
pairs and generating the correspondences between input
signals and output actions.

There are alternative approaches for a robot to learn
skills of experts. One method is to transfer skills of the
human expert to the robot manipulator by the off-line
method, [6]

That is, we collect sample data

S ={(si.ai), i=1,---,n} (1
where s and a represent, respectively, the sensor
information and the motion of the robot and n is the number
of samples. Then,the data are analyzed by a computer in
order to derive skills of the human expert. Finally the
skills are transferred to a robot by programmable language
of the robot. However, in skill representation or skill
transfer, the capacity mismatch problem arises due to the
difference in the physical capability of perception and
action between a human expert and a robot.

Based on the above observation, our ARAS is structured not
by skill transfer from a human expert to a robot with
off-line method but by their own set of primitive features
which can be directly acquired in an actual environment,
even though some help of experts is needed in advance.

In summary, this paper will show a new approach to
chaaferless and high-precision robotic assembly. Our ARAS
will not require complete analysis of assembly tasks and
will need little special hardware such as vibratory
equipments. The resulting ARAS have learning ability which
is performed with little help of human experts. In
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Fig.1 Contact configuration

Table 1. A priori knowledge for mapping between sensor
information and direction of positional error

Sensor Inforsation (Contact configaretion Di-
rection of latersl ervor

One-point comtact, +X
One-point contact,+X +Y
[One-point contact, +Y
{F100, F<0, Mx>0, MyX0, | Fxin| Fyl, [Mxle [ Myl Jone-point: ocotact,-X +Y
Fx >0, My >0, |Fxl»|Fy| One-point oontact, -X
F100, F120, Mx<0, MyX0, | Fxls| ], [Mxln| My) jOne-point. contact,-X -Y
Fy>0, Mx <O, |Fylo|Fxl (Gne-polnt contact, -Y
Fx<0, Fy0, Mx<0, My<0, | Fxls| Pl | Mxle| My} |One-point. contact, +X -Y
Others Two-point contact

Fx <0, My <0, |Fx|»|Fy]
Fx<0, F <0, Mx>0, M¥<0} Fxin| Fx|, |Mxis | My}
Fy <0, Mx > 0,|Fy|»|Fx|

particular, we will emphasize the strategies and skills
obtained through ARAS are effective in a given actual
environment by robotic assembly experiments even though they
are constrained to a narrow class of assemblies.

2, Tinematic Amalysis

When a peg contacts with the surrounding of a hole, contact
configurations can be classified into two groups, 1-point
contact and 2-point contact, depending on positional and
angular error. Fig.1 shows the force and moment applied to
the peg and the corresponding reaction forces at the contact
points. In our models, we assume the parts to be infinitely
rigid and massless, and we use the dry coulomb model to
represent friction. We represent the normal component of
the reaction force at a contact point, as f and static
coefficient of friction as u. We represent the angle of the
peg’s axis with respect to the hole’s axis as 6. Assuming
that there is only x-direction positional error and
one~point contact, the resulting equilibrium relations are
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Rotation angle
\ of the peg

Fig. 2 Rotation of the peg in search stage

expressed in the coordinates of the peg frame as follows:

Fz + fcos@ + ufsing
Fx - fsin@ + ufcos@
My - frcos@ -ufrsin@ =0

0 (2
V] (3)
o

no#

Here Fi and Mi, i=x, y, and z, represent the -omponents of
the measured force and moment ‘ransformed by the peg
coordinate frame, respec'ively and r is the radius of the
peg. The sirliar analysis can be applied to other direction
b; transformation of cuordinate frame. Table 1. shows the
rough relation between the direction of positional error
and the force sensor information, considering the various
forms of uncertainty.Using the result in Table 1 as a priori
knowledge,the peg can be approached to the neighborhood of
the Goal Area! ,even though the searching task is not vet
completed successfully .(we call it Sub Goal Area?)

3. Nechanics of Rotation

The final purpose of ARAS is to acquire the task strategies
generated through iterative learning. Since ARAS allows the
robut to learn the appropriate action in response to the
percepted signal,ARAS wmust have efficient appropriate
actions.

Assuming that the positional error is extremely small, in
case of 2-point contact, if we rotate the peg clockwise, the
contact point Bi becomes the instantaneous center and the
instantaneous center moves along the edge of the hole.
Therefore the peg can wove the Goal Area! as shown in Fig.2.
If we rotate the peg counterclockwise, the comtact point Bz
becomes the instantaneous center and the peg can move the
Goal Area, too. Of course, if the peg is connected with the
robot in one rigid body, the movement as shown in Fig.2 will
be impossible because the motion between the peg and the
surrounding of the hole will become sliding motion. With the
aid of compliant structure installed between the end
effector of the robot and the peg,the motion between the peg
and the surrounding of the hole becomes rolling motion.
Therefore the contact point becomes the instantaneous center
and the peg begins to rotate about the contact point. As the
peg rotates the instantaneous center moves toward Goal Area.

! Goal Area is the region in manipulator space where the
searching task is completed successfully.
2 Sub Goal Area is the region in manipulator space where the

peg can easily move into Goal Area with only rotation
action.
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Fig. 3 Structure of ARAS

4, ARAS Structure

This paper proposes a new concept of robotic assembly
scheme with learning ability, ARAS, which is shown in Fig.3
In this section, a method for learning strategies, i.e.
mappings which relate sensor signals to appropriate actions
of a robot is discussed. In paticular, this paper will
emphasize the robot's self-acquisition of skills from the
experience in actual task environments.

4.1 Perception Space

In general,industrial robots can not perform chamferless
assembly successfully only with its own capability due to
the presence of various forms of uncertainties[7]. These
uncertainties make a robot to deviate from the nominal
motion and undesired geometrical contacts, These undesired
geometrical contacts, after all, result in contact forces
and moments. In order to succeed chamferless assembly tasks
in spite of uncertainties, it is necessary to devise part
mating strategies that relate the force signal to desired
corrective motion.Even though sensor signals include its own
uncertainties, ARAS can deal with these uncertainties.Our
idea on dealing with the uncertainties starts with the fact
that the uncertainties are bounded to certain region[8].
Therefore the signal region can be mapped into the
appropriate corressponding action of the robot.Consequently
task strategies are established by connecting primitive
signals with the appropriate robot’s action through
iterative experiences in actual engineering environments.

Inertial effects which depend on the placement of the
force sensor on the robot arm may cause robot to make an
erronecus decision., Inertial forces varies depending on the
magnitude of acceleration. To remove the difficulties caused
by inertial effects, force/moment readings are conducted
under static conditions.

4.2 Action Space

Our method doesn’t need to collect sample data in advance.
Actions in our method are not self-generated but provided in
advance with the aid of experts. Then the actions are
correlated with the percepted signals. The criterion in
selecting an action is as follows:
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(1) Reliability: Robot should exhibit the action reliably
in spite of uncertainties of the robot control.

(2) Effectiveness: The action is assured to be effective by
experts.

(3) Executability: The action is executable without any
change of robot control hardware. It can be implemented with
the original capability of a commercial robot.

4.3 Self-Organization of Database (Unsupervised Learning
Database)

The key issue addressed in this paper is to associate
sensor signals with appropriate actions of a robot and
generate task strategies via iterative learning in actual
physical environment. Task strategies can be represented as
the mapping between the perception space and action space.
Skills are denoted by terms of IF(state of sensor
signal)THEN(desired corrective action). In this paper, we
propose unsupervised learning database supported by
self-organizing database[9] for representing and generating
task strategies. Task strategies and skills must be
discovered via iterative learning even though they are
expressed implicitly. Unsupervised means here that whether
the database is expanded or not is decided depending on the
evaluation of a criterion which is established in advance by
assistance of experts.

Let R™ be the set consisting of all ordered n- tuples of
real numbers and let the perception space S and the action
space A be n- and m- dimensional vector spaces,
respectively, defined over a scalar number filed F. Then S
C R\, 4 C R®, Any s C S represents a signal in the
perception space and is also an input to the lesrning
machine, Any @ € 4 represents an action in the action space
and is also an output of the learning machine corresponding
uniquely to a s. Let the descrimination function d be an
mapping S » S — real 2> 0 that satisfies the following
condition:

For any (s.3) € S > S, d(s.5) is positive whenever ¢ = @
Here, @ and @ are the outputs which s and § correspord to,
respectively.

Experience, as a collection of signal-action pairs,
(si,ai), can be organized in a tree type data base. This
machine analyses the samples of (s,a) € § x 4 with d and

memorizes its results in a self-organizing way. The
followings are the algoritha of unsupervised learning
database:

Step 1:(Initialization) Set i=1. Let (s{rootl, alroot]) =
(s,a). Here s[-] and al-] are the memory variables assigned
for respective nodes to memorize samples

V(s,a) € S x 4

Step 2:(Finding terminal node) Increase i by 1, and put si
in, After resetting a pointer a to the root node, repeat the
following until the pointer arrives at some terminal node.
If disi,s[n1])< d(si, slnr]), nani. Othervwise nane. Here ni
and nr mean the successor nodes of n.

Step 3:(Evaluation) Move a robot as the action uemorized in
alterninal nodeland evaluate the action to judge a success
or a failure with an evaluation function. If evaluation
results in a success, go back to step 2. Otherwise go to
step 4.

Step 4:(Selecting better action) Let a! = alterminal
node]. Choose a € 4 randomly, except ai and execute the
action a and evaluate it. Here aJ are the excuted actionms.
If successful, go to step 5. Otherwise, return to the
original state and after letting aJ = aljust executed
action], repeat step 4 until success.

Step 5:(Expanding the data base) Regard and establish new
successor nodes as follows:

(sfn1],alm D) =(s[nl,alnl), (s[nrl,alnr D =(s1,@)

Finally go back to step 2.
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Fig.4 Structure of experimental system

5, Experinents

Actually, the assembly task is composed of two process; the
searching process and the inserting process. The inserting
process is quite different from the searching process. Our
ARAS can be applied to both the searching process and the
inserting process without the change of system structure.
When the assembly task transits from the searching process
to the inserting process, ARAS can be adapted only by
changing the database, We have already shown that our ARAS
is effective in case of inserting process{10]. In this
paper, therefore, we focus on the searching process.

In addition, based on above discussions, we assume as
follows:

(1) Positional error between a peg and a hole is within
about 0.5 mm

(2) Angular error is adjusted
setting of swivel table,

(3)Some compliance exists between the robot end effector
and the peg

almost to zero by the

5.1 Systes Hardware

Fig.4 shows the structure of the robot system.It consists
of a SCARA type robot,a 6-axis force sensor,a compliant
structure(RCC), and a computer(PC-9801 VX2). The
specification of hardware used in the experiment is shown in
Table 2. The computer communicates with the force sensor by
GP-IB and the robot by RS-232-C. ARAS and control schemes of
circumferential equipments are implemented using C language.
The diameter of the peg is 20 mm, clearance is 0.01 am and
both the peg and the hole are chamferiess. The swivel table
is used to adjust the angular error.

5.2 Preliminary Experiment

To acquire task strategy autonomously, ARAS requires some
criteria for evaluating whether the executed action is
successful or not. To obtain them, we made simulated
experiments so as to complete the task successfully.Finally,
to discriminate whether the peg is in the SGA or not, the
following criterion is introduced:

lpn{teri - IFbofors;

<-0.20 (5)

!Fbek‘oro]

or (6)

Irafterl < 1500(gf)

where Fbefore and Fafter represent, respectively, Fz signals
before and after the executed action.
Next in order to discriminate whether the searching task is
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Table 2. Specifications of Experimental hardware

Manipulator (Daikin S2400)

SCARA
No. of axis 4
Pay load 3.5kgf(high speed)-5kgf(low speed)
Repeatability + 0.05 mm
Actuators AC servo motor

Force Sensor(Omron )

No of axis 6

Regular load Force 5 kgf moment 20kgf cm
Resolutions 0.1 X of regular load
Sampling time 5 m sec
RCC(Bando RCC-112-BS)

Horizontal stiffness 7.4 kgf/cm
Rotational stiffness 890 kgf-cm/rad

Press the peg to the hole at a constant force
(Memorizing the origimal state)

I
llnput sensor information I
J s

Descrimination of comact configuration
from a priori know

I Translat ional oor-recfwe mot ton

Rotational
correct ive
uotlon

Success ?

[Return to the memorized original sla!e

[ Select a corrective motion from the da!abase

W

I Return to the mtaed original state

0

G@

|£Ject a corrective motion at mndo-J

Success ? update the database
e 7 ]

Fig.5 Flowchart of experiment

completed or not, we employ the following heuristic function
based on the preliminary experiments:

IF.l‘terl - 'Fboforol
<-0.95 (7
Ifhofornl
or |F.nor[ < 50(gf) (8)




Fig.6 Photo of the assembly task
(a) Peg and block with hole are lying on swivel table
(b) Robot contacts the peg with the surrounding surface
of the hole
(c) Robot brings the peg over the hole through
corrective actions -
(d) Robot inserts the peg into the hole

5.3 ARAS

ARAS accepts only static force/moment signals when Fz comes
to about 400 gf. Each ‘of perception signals contains 6
components of forces and torques, i.e, Fx,Fy,Fz,Mx,My, and
Mz from the force sensor.

Since vur assembly tasks are performed by SCARA robot, some
simple motion, e.g. straight line or simple rotation is
sufficient to maintain the same contact configuration during
the searching process. The action space is composed of 8
translational movement and 2 rotational movement about Z
axis which correct the angular error as discussed in Section
3. Each of Ai's in Fig.7 represents a direction of
translational corrective action.Step distance of
translational movement is 0.05 mm and that of rotational
movement is 1 degree.The discrimination function d is
calculated based on Eucledian distance on perceMion space.

5.4 Experimental Procedure

Fig.5 shows the flow chart of ARAS and and Fig.6 shows the
sequence of photographs taken during the experiment. When
the contact force between the peg and the hole comes to a
certain threshold, the searching process starts. First of
all contact configuration is discriminated and the
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Fig.7 Direction of positional error and corrective action
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Fig. 8 Trasition of the success rate and number of nodes
during the learning process for searching stages
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Fig. 9 Comparision of the success rate and the number of
nodes with/without a priori knowledge for cearching
stages

corrective action of the robot is selected using the priori
knowledge given in Table 1. If the action does not lead the
peg to Sub Goal Area or Goal Area, another action is
determined according to the strategy constructed by ARAS
iteratively.

6, Experinental Results and Discussion

To confirm the learning effect of ARAS,we assume that the
direction of the positional error is limited to 8 different
type as shown in Fig.7.Ei’s in Fig.7 represent the
directions of positional error.The initial positional error
at every trial is given randomly. Fig.8 shows the transition
of the success rate and the number of nodes during the
learning process with a priori knowledge. The success rate
is computed as the rate of successful times in 30 trials
right before the action. The success rate comes to nearly
100% after about 100 trials. Fig.9 shows the comparison of
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Fig.11 Transition of the success rate and the number of
nodes in the case that initial angular error(6x)
is changed as follows:0.0 — 0.2(changed at 100th
trial) — 0.1ldegree(changed at 200th trial)

the success rate and the number of nodes with/without a
priori knowledge. Even without using a priori knowledge, the
Success rate comes to nearly 100 %. Though ARAS with the
priori knowledge is more effective than ARAS without it, the
difference is small, After all our ARAS leads to success
even in case of no a priori knowledge. The node number in
figure's represents the amount of generated nodes in
database. About 30 byte memory size is enough for each node
to contain 6-component of perception signal data, action
data, and data for the comnmection of binary tree type
database. Therefore the memory quantity for the database and
the time to handle the database is negligible.

In actual assembly tasks, there must be a variation in the
part size or the angular error. To investigate if ARAS is
still effective,even in case of the change of part size,we
used pegs with different size. The clearance is changed
from 0.01 am to 0.05 mm at 100th trial. Fig. 10 shows that
ARAS is still effective to the variation of the part size.
Fig.11 shows success rate vs trial number while angular
error of x component is varying from O to 0.1 through 0.2
degree.This result indicates that the strategy established
up to 200 th trial is not updated at all after 200 th
trial.That is,ARAS can be thought to have a kind of
interpolation ability for the angular error.

In summary ARAS is effective for the acquisition of the
strategy in a given actual assembly task and somewhat robust
to the variation of angular error or part size.

1.Conclusions

We have discussed the assembly system which can acquire the

mapping relations between the force information from sensor
and the corrective actions of the robot through the
iterative learning in actual task environments.
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It is important to select inputs and outputs of learning
machine based on the effectiveness in given tasks. We have
introduced the rotational corrective motion in the search
task, in addition to the conventional translational
corrective motion and have confirmed the effectiveness of
the rotational action.

Our proposed system have been applied to the search stage
of assembly task in actual environments to acquire the task
strategy autonomously. The experimental results have showed
that the proposed system is effective for acquiring the task
strategy and somewhat robust to the variation of part size
or angular error.
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