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Modified carbon nitride nanozyme as bifunctional
glucose oxidase-peroxidase for metal-free
bioinspired cascade photocatalysis
Peng Zhang1, Dengrong Sun2, Ara Cho2, Seunghyun Weon 1, Seonggyu Lee2, Jinwoo Lee2, Jeong Woo Han 2,

Dong-Pyo Kim2 & Wonyong Choi 1,2

Nanomaterials-based biomimetic catalysts with multiple functions are necessary to address

challenges in artificial enzymes mimicking physiological processes. Here we report a metal-

free nanozyme of modified graphitic carbon nitride and demonstrate its bifunctional enzyme-

mimicking roles. With oxidase mimicking, hydrogen peroxide is generated from the coupled

photocatalysis of glucose oxidation and dioxygen reduction under visible-light irradiation with

a near 100% apparent quantum efficiency. Then, the in situ generated hydrogen peroxide

serves for the subsequent peroxidase-mimicking reaction that oxidises a chromogenic sub-

strate on the same catalysts in dark to complete the bifunctional oxidase-peroxidase for

biomimetic detection of glucose. The bifunctional cascade catalysis is successfully demon-

strated in microfluidics for the real-time colorimetric detection of glucose with a low

detection limit of 0.8 μM within 30 s. The artificial nanozymes with physiological functions

provide the feasible strategies for mimicking the natural enzymes and realizing the biome-

dical diagnostics with a smart and miniature device.
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Natural enzymes with high substrate specificity and cata-
lytic efficiency prevail to mediate the biological processes
in living organisms under mild reaction conditions1,2.

However, because protein enzymes suffer from high cost of
production and intrinsic instability, nanomaterials-derived arti-
ficial enzymes, nanozymes, have been extensively investigated to
imitate the protein enzymes in biomimetic chemistry3,4. For
example, glucose oxidase (GOx) and horseradish peroxidase
(HRP) as the prototype enzyme pair have been often employed in
enzyme cascade catalysis particularly for blood glucose mon-
itoring, and various nanozymes have been developed for their
applications to enzymatic reactions. Since the first peroxidase-like
nanozymes of magnetite was reported5, a series of oxide-6,7,
metal-8,9, and carbon-based10–13 nanomaterials with good stabi-
lity and specificity have been employed to mimic HRP for the
peroxidation of 3,3’,5,5’-tetramethylbenzidine (TMB) and 2,2’-
azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)-diammonium
salt (ABTS) in the presence of hydrogen peroxide (H2O2) or in
cascade glucose detection14–17. In such nanozyme systems, H2O2

is generated from glucose oxidation in the presence of GOx and
the resulting H2O2 is subsequently utilized by nanozymes to
oxidize chromogenic substrates through their peroxidase
mimicking for colorimetric detection of the glucose level (see
Supplementary Table 1). In the development of peroxidase-like
nanozymes for cascade glucose detection, the production of
intermediate H2O2 is the main rate-determining step in the bi-
enzymatic reaction, and the glucose-GOx system suffers from the
poor atom efficiency18. Therefore, the efficient H2O2 production
using an alternative GOx-like nanozyme that plays the bifunc-
tional roles (both GOx-like and peroxidase-like) is urgently
required. Although there have been some reported examples of
bifunctional oxidase-peroxidase mimicking nanozymes, all of
them are based on expensive noble metal catalysts (see Supple-
mentary Table 2). From this point of view, the metal-free
bifunctional nanozymes consisted of earth-abundant elements
only are highly desired.

Compared with the common methods of H2O2 production
such as anthraquinone method19 and noble metal-based cata-
lysis20, the photocatalytic generation of H2O2 through the
proton-coupled electron transfer to dioxygen (eq. 1) is highly
desirable since it does not need H2 gas reagent and the process
operating in ambient condition is eco-friendly21,22. The major
challenges in the photocatalytic production of H2O2 are to
enhance the selectivity of two electron transfer to dioxygen and to
minimize the decomposition of in situ produced H2O2

23,24. The
graphitic carbon nitride (g-C3N4: GCN) is an ideal material that
can hinder the in situ decomposition of H2O2 since it has lower
adsorption for H2O2. In addition, chemical functional groups and
electronic properties of the GCN can be easily varied through
simple modification25–27, which makes it a promising photo-
catalyst for H2O2 production. Although GCN with good bio-
compatibility has been also employed as a peroxidase-mimicking
nanozyme for glucose detection28–30 (Supplementary Table 1), its
GOx-mimicking behaviour has never been explored in enzymatic
tandem cascade (domino) reactions for colorimetric detection of
glucose.

O2þ2Hþþ2e� ! H2O2; E
�¼ 0:695VNHE: ð1Þ

Herein, we propose the example of a bifunctional metal-free
nanozyme of modified GCN, which performs the dual roles for
oxidase-mimicking in glucose oxidation and peroxidase-
mimicking in chromogenic substrate oxidation under irradia-
tion and dark condition, respectively. The selectivity for dioxygen
reduction and efficient charge separation promote the in situ
photogeneration of H2O2 from glucose oxidation under visible

light. The in situ produced H2O2 is then utilized for subsequent
peroxidation of a chromogenic substrate on the same modified
GCN to complete the bifunctional oxidase-peroxidase mimicking
in glucose detection. Finally, the GCN-based bifunctional
enzyme-mimicking cascade catalysis is successfully demonstrated
in a continuous flow microfluidic reactor for rapid and sensitive
real-time monitor of glucose.

Results
Design and characterization of the bifunctional nanozyme.
When coupled with the glucose-GOx, the in situ production of
H2O2 from glucose oxidation serves for the subsequent HRP-
mediated peroxidation of TMB for colorimetric detection of
glucose (Fig. 1a)15,31. In this work, we employed the modified
GCN as an artificial enzyme (nanozyme) that mimics the dual
roles of GOx (oxidizing glucose with in situ production of H2O2)
and HRP (TMB oxidation using in situ generated H2O2) in
natural enzyme system (Fig. 1b). The modified GCN functions as
a GOx-like photoenzyme that photocatalytically oxidizes glucose
with the concurrent reduction of O2 to H2O2 under visible light.
The in situ generated H2O2 is then reductively decomposed (eq. 2
and 3)10 with oxidizing TMB on the modified GCN, which
mimics HRP in the dark condition.

H2O2þHþþe� ! OH�þH2O;E
�¼ 1:14V ð2Þ

H2O2þ2Hþþ2e� ! 2H2O;E
�¼ 1:763V ð3Þ

The GCN photocatalyst is ideally suited for the visible light-
induced synthesis of H2O2 since the generated H2O2 has little
adsorption ability onto GCN surface and its in situ
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systems. a Glucose detection using enzymes: colorimetric detection of
glucose using glucose oxidase (GOx) and horseradish peroxidase (HRP).
b Glucose detection using a synthetic bifunctional nanozyme:
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on AKCN (modified GCN). In situ H2O2 generated from glucose oxidation is
subsequently supplied as a fresh reactant to mimic the peroxidase function
as shown in a. Source data are provided as a Source Data file
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photodecomposition can be minimized. The pure GCN, however,
has a low photoactivity for H2O2 production and therefore the
modification of GCN with multiple elements doping has been
tried to enhance the photoefficiency significantly34,35. A recent
study that synthesized KPF6-modified GCN achieved an apparent
quantum yield of 24% at 420 nm for the production of H2O2 in
ethanol solution35. To further increase the photoefficiency of
H2O2 production to mimic the high efficiency of GOx enzyme,
we developed a modified GCN. The synthesis of pristine GCN via
the one-pot thermal polycondensation of melamine36 was
modified by introducing KOH or/and KCl. The modified GCN
samples incorporated with KOH, KCl, and both are referred as
ACN, KCN, and AKCN, respectively. The resulting AKCN
exhibited the main phase of GCN in the XRD spectrum (Fig. 2a).
The fact that the (002) peak shifted along with the disappearance
of (100) peak indicates the presence of K interaction among the
interlayer and in-plane36–38, which contributed to the formation
of tightly stacked layers on modified GCN compared with pristine
GCN, judging from the FESEM images (Supplementary Figure 1).
In FTIR spectra, the surface hydroxyl group grafting (–C–OH)
over AKCN was evidenced from the appearance of extra bands at

1000, 1158, and 2152 cm−1 (Fig. 2b), which indicates the
replacement of terminal –NH2 groups by hydroxyl groups after
KCl and KOH introduction32,34. In addition, the noticeable
appearance of the new band around 2180 cm−1 in ACN, KCN,
and AKCN samples can be ascribed to the cyano groups (–C≡N)
transformed from the terminal –C–NH2 at the melon structural
unit33,36.

The compositions and chemical states in pristine and modified
GCN samples were further analysed through XPS survey analysis
(Supplementary Figure 2). In the high resolution C 1s spectra of
pristine GCN (Fig. 2c), the typical components around 288.2,
286.4, and 284.8 eV can be indexed as N–C=N, C–NHx, and
adventitious carbon, respectively. The markedly enhanced peak
around 286.4 eV in ACN, KCN, and AKCN indicates the
presence of more C–NHx groups, which subsequently induces
more tricoodinated N3C species (around 400.0 eV) deriving from
the cyano group formation38. It should be noted that most peaks
of N 1s and C 1s in AKCN exhibit a clear shift to lower binding
energies compared with pristine GCN (Fig. 2c), which reveals the
effect of KCl and KOH modification on the chemical bonding in
the GCN structure. The binding energies of K 2p (292.5 eV and
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295.2 eV) and Cl 2p (197.3 eV and 198.9 eV) peaks are also
significantly shifted from those of KCl (K 2p3/2: 293.6 eV; Cl 2p:
199.2 eV), which supports that K+ and Cl− ions interact with the
surrounding C and N atoms37. The distribution of K and Cl
elements incorporated within AKCN structure is clearly seen
from EDS mapping along with the backbone elements of C and N
(Fig. 2d). A small O 1s peak was observed in the survey scan
(Supplementary Figure 2a) due to the adventitious oxygen-
containing species (–C–OH) grafted on the surface, which is
consistent with the FTIR result. In comparison with other
counterparts, AKCN with higher XPS elemental concentrations of
K (8.91 at%) and Cl (0.63 at%) that electronically interact with the
chemical structure of GCN should influence the migration and
separation of electrons and holes. All the above analysis revealed
that AKCN successfully incorporated K and Cl atoms in the GCN
framework to bridge the interlayers for efficient charge
separation.

Photocatalytic H2O2 production. The ideal atom efficiency of
sunlight-driven H2O2 generation (overall reaction as eq. 4) can be
up to 100% by coupling the efficient water oxidation (eq. 5) and
the selective two-electron reduction of O2 (eq. 1). However, the
photocatalytic production of H2O2 has been commonly investi-
gated by utilizing alcohols as an electron donor since the water
oxidation (eq. 5) is inefficient21,22. This study aims to utilize
glucose as an electron donor instead of alcohols and employed
GCN as a photoenzyme that mimics the role of GOx under visible
light. Since the activity of pure GCN for the production of H2O2

is low, the pure GCN was further modified by incorporating
KOH, KCl, and both (KOH/KCl). ACN and KCN were optimized
for the content of KOH and KCl and characterized by XRD and
FTIR (Supplementary Figure 3 and 4). The photocatalytic pro-
duction of H2O2 from the resultant samples was tested in the
presence of ethanol (see Fig. 3a), which should serve as a proxy
test for H2O2 production coupled with glucose oxidation25. The
highly selective H2O2 formation under visible light was enabled
by promoting two-electron reduction of O2 via the rapid for-
mation of 1,4-endoperoxide species in the polymeric GCN
structure23. The in situ generated H2O2 can be also utilized as a
Fenton reagent to accelerate the photocatalytic oxidation pro-
cess34,38. Among various GCN samples modified with different
reagents containing alkali metal ions and halide ions, the GCN
incorporated with KCl and KOH exhibited markedly higher
activities (Supplementary Figure 3d and 4d). To investigate
whether the optimal molar ratio can be different when both KOH
and KCl are copresent, we carried out an additional optimization
of KOH content in the presence of a fixed content of KCl
(Supplementary Figure 5). By comparing Supplementary Figure 3
and 5, we found that the optimal content of KOH was not
influenced by the presence of KCl. Figure 3b shows that AKCN
with global optimization of KOH and KCl produced the highest
amount of H2O2 (3.4 mM) in 3 h, which was 2, 4, and 24 times
higher than KCN (1.58 mM), ACN (0.85 mM), and pure GCN

(0.14 mM), respectively. In this case, the effect of catalyst surface
area on the photoactivity seems to be insignificant because AKCN
with the highest activity had the smallest SBET (Table 1). As for
the wavelength-dependent activity, Fig. 3c shows that the pho-
toactivity of AKCN well matches the absorption spectral profile
whereas the photoactivity of pure GCN is negligible despite its
visible light absorption in the same wavelength range. In parti-
cular, AKCN exhibited the apparent quantum yield (AQY) close
to 100% in the range of 320–420 nm and 56% at 450 nm, which
seems to be the highest reported AQY of H2O2 production in the
visible light range to our knowledge.

2H2OþO2 ! 2H2O2 ð4Þ

2H2Oþ 4hþ ! O2 þ 4Hþ ð5Þ

It is noted that all the modified GCN (ACN, KCN, and AKCN)
exhibited more negative zeta potentials in comparison with pure
GCN (Supplementary Figure 6). The higher negative surface
charge on the modified GCN should be favourable for H2O2

production (eq. 1) since the supply of protons onto the negatively
charged catalyst surface should be facilitated by the electrostatic
attraction24,39. AKCN produced the highest amount of H2O2

consistently in a wide pH range (pH 3–11) than GCN, ACN, and
KCN. When comparing different photocatalysts, the activities
were measured at pH 3 because the activity differences among
different photocatalysts were most clearly observed at this pH (see
Fig. 3d). However, it should be noted that the optimal catalyst
composition determined at pH 3 was the same as that determined
at phosphate buffer condition (see Supplementary Figure 3c and
4c). In this case, AKCN exhibited the highest enhancement at
neutral phosphate buffer solution as a result of the possible
specific phosphate promotion (Fig. 3d and Supplementary
Figure 5)40,41, which concurrently matches the optimal condition
of GOx action. The production of H2O2 in the phosphate buffer
solution increased in the order of (AKCN > KCN > ACN >GCN),
which is the same trend as observed at pH 3, and gradually
reached the photostationary state in 16 h irradiation (Supple-
mentary Figure 7). This indicates that the formation and
decomposition rate of H2O2 is balanced after a prolonged
irradiation42,43. In addition, all catalysts (GCN, ACN, KCN,
AKCN) exhibited significantly hindered activity for the decom-
position of H2O2 under visible light (see Supplementary Figure 7,
left axis). Unlike metal oxide photocatalysts with high adsorption
for in situ generated H2O2, GCN catalysts with little adsorption
ability for H2O2 have insignificant activity for H2O2 decomposi-
tion and are ideally suitable for the production of H2O2

39,44.
From the viewpoint of stability, AKCN exhibited a good stability
without loss of activity during repeated cycles (Supplementary
Figure 8). On the other hand, the characteristics of the electron
transfer to O2 on AKCN was investigated by the rotating disk
electrode (RDE) analysis, that enables the estimation of the
number of electrons (n) transferred to O2 from the slope value of
Koutecky–Levich plots (Fig. 3e). The estimated “n” values were
close to 2 for pure GCN, ACN, KCN, and AKCN, which indicates
that dioxygen molecules is selectively reduced by two-electron
transfer only23,25.

Improvement of charge separation. As for the light absorption,
the absorption edge of KCN, ACN, and AKCN is progressively
redshifted with respect to pristine GCN (Supplementary Fig-
ure 9a), which corresponds to the bandgap change from 2.79 eV
to 2.70 eV (Table 1) according to the Tauc plot anlalysis (Sup-
plementary Figure 9a inset). The valence band position could be
determined from the valence band XPS (Supplementary

Table 1 Structural characteristics of various carbon nitride
samples prepared at 550 oC

Samples Reagent molar ratio SBET
(m2 g−1)

Vp

(cm3 g−1)
Eg
(eV)

GCN Melamine 7.6 0.05 2.79
ACN Melamine+ KOH/

(1:0.002)
4.8 0.03 2.77

KCN Melamine+ KCl/(1:0.08) 3.0 0.02 2.74
AKCN Melamine+ KOH+ KCl

/(1:0.002:0.08)
2.2 0.01 2.70
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Figure 9b). This combined with the above bandgap determination
shows that conduction band (CB) and valence band (VB) levels
slightly shifted to the positive potential after the modifications of
KCl and KOH (Supplementary Figure 9c). However, such a small
potential shift cannot provide enough overpotentials for raising
the photocatalytic activity of AKCN to the level that is sig-
nificantly higher than that of GCN, ACN, and KCN. This implies
that the markedly high photoactivity of AKCN might be related
to not only the thermodynamic factors, but also the kinetic fac-
tors, which should facilitate the charge separation and transfer in
the modified structure of GCN. How the photocatalytic activity is
strongly enhanced for H2O2 production in AKCN is discussed in
relation with the calculated electronic properties in a later section.

To characterize the photoelectrochemcial properties, the
chopped photocurrent response and electrochemical impedance
spectra measurements were further carried out by using the as-
prepared electrodes (Fig. 4a inset). The synergetic effect of K
incorporation and surface alkalization on charge separation was
clearly demonstrated from the observation that AKCN exhibited
the highest photocurrent among all tested electrodes (Fig. 4a). It
has been reported that the surface alkalization improved the
charge separation on ACN compared to GCN45 and the K-
incorporation bridged structure facilitated the anisotropic
electron flow and separation37,46. When K incorporation was
coupled with surface alkalization, AKCN exhibited the highest

photocurrent, which was consistent with its smallest arc radius in
Nyquist plot analysis (Fig. 4b). The highly enhanced interfacial
charge transfer on AKCN was further confirmed by measuring
the Fe3+/2+ shuttle-mediated photocurrent in the catalyst
suspension under visible light, which was also highest with
AKCN (Fig. 4c). In the transient open-circuit voltage decay
(OCVD) measurements, AKCN exhibited higher open-circuit
voltage and slower photovoltage decay than pure GCN (Fig. 4d),
which indicates that the charge recombination in AKCN is
hindered for prolonging the lifetimes of charge carriers (Fig. 4d
inset)47.

Glucose oxidase-like activity. AKCN exhibited the superior
photoactivity for H2O2 generation in neutral phosphate buffer
solution (0.1 M, pH 7), which happened to be coincident with the
typical working condition of glucose oxidase (GOx). When
alcohol is replaced by glucose as the electron and proton donor,
the GOx-like activity of AKCN can be induced under visible light
to produce H2O2 and gluconic acid from the glucose oxidation
(see Fig. 5a). The photocatalytic GOx-mimicking behaviours of
AKCN were successfully demonstrated by in situ photoproduc-
tion of H2O2 (Fig. 5b), which was proportional to [glucose]: the
production of H2O2 exhibited an excellent linear correlation with
[glucose] up to 0.1 M (Fig. 5b inset). The production of CO2 from
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the photocatalytic oxidation of glucose was negligibly small
(2 µmol), compared with that of H2O2 (0.8 mM, in the O2-satu-
rated glucose buffer solution (1M) after 1 h irradiation). This
indicates that the photocatalytic mineralization of glucose is
prohibited in the present condition and glucose is selectively

phototransformed to gluconic acid on AKCN as illustrated in
Fig. 5a. The concentration of H2O2 was determined by the col-
orimetric N,N-diethyl-1,4-phenylene-diamine sulfate (DPD)
method (DPD oxidized by H2O2 and POD), which exhibited a
good linearity up to 1.5 mM H2O2 (Supplementary Figure 10).
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the catalyst suspension. d Open-circuit voltage decay (OCVD) measurement (inset: average lifetimes of the photogenerated carriers as a function of the Voc).
The black open-triangle and pink open-square represent the GCN and AKCN, respectively. Source data are provided as a Source Data file
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The photocatalytic production of H2O2 on AKCN was negligibly
small in Ar-saturated condition (O2-free) and progressively
higher in air-saturated and O2-saturated condition (Fig. 5c),
which supports that H2O2 production is derived mainly from the
selective two-electron reduction of O2 when coupled with the
photooxidation of glucose. In accord with its higher AQY in
EtOH, AKCN also exhibited highest AQY (close to 100%) for
H2O2 production in glucose buffer solution under the visible light
(Supplementary Figure 11). Similar to the behaviour of GOx with
good specificity for glucose, this photoenzyme of AKCN also
exhibited the higher selectivity for glucose oxidation when com-
pared to other glucose analogues, such as fructose, lactose, and
maltose (Fig. 5c). Overall, AKCN seems to mimic the behaviour
of GOx (producing H2O2 along with the simultaneous oxidation
of glucose) under visible light irradiation. The resulting H2O2 can
be furthered to combine with peroxidase (HRP) to oxidize
chromogenic substrates for colorimetric detection of glucose.

Peroxidase-like activity. On the other hand, the intrinsic
peroxidase-like activity of AKCN was also tested in the AKCN-
TMB-H2O2 system, where the chromogenic substrate of TMB
was oxidized under the dark condition (Fig. 6a). The resulting ox-
TMB generated deep blue colour (Supplementary Figure 12). This
demonstrated the bifunctional biomimetic roles of AKCN: (1)
AKCN plays the role of photoenzyme to mimic GOx that oxidizes
glucose with the concurrent production of H2O2 under visible
light; (2) AKCN mimics HRP that oxidizes the chromogenic
TMB to induce blue coloration in the dark. The peroxidase-
mimicking activities of AKCN were compared with those of HRP
with varying pH and temperature (Supplementary Figure 13).
The operating pH and temperature ranges are quite similar
between AKCN and HRP, but AKCN with graphitic structure
exhibited consistently higher activities than HRP above 30 °C.

The peroxidase mimicking activities of AKCN were system-
atically investigated by varying one substrate concentration while

keeping the other one constant. It was found that the steady-state
kinetics well followed the typical Michaelis–Menten model in the
tested concentration range of H2O2 (Fig. 6b) and TMB (Fig. 6c).
From the Lineweaver–Burk double reciprocal plots (inset), the
corresponding kinetic parameters of maximum initial velocity
(Vmax) and Michaelis–Menten constant (Km) were obtained from
the slopes and intercepts of the fitted lines, which are summarized
in Supplementary Table 3. Compared to ferric oxide (154) and
HRP (3.7)5, the lower Km value of AKCN (0.79) for substrate
H2O2 represents its higher binding affinity for H2O2

48, indicating
the lower concentration of H2O2 required to reach the maximal
activity of Vmax. In contrast, the Km value of AKCN with respect
to TMB was significantly higher than that of HRP, consistent with
the higher TMB concentration required to achieve the maximal
activity through the mediation of charge transfer between TMB
oxidation and H2O2 reduction49. Same as the case of electrons
transfer from graphene to H2O2

10, the AKCN with graphene-like
structure can also facilitate the electron transfer from TMB
(TMBOx/TMB 1.13 V) to H2O2 (H2O2/H2O 1.776 V) for intrinsic
peroxidase-like activity50,51. However, the detailed mechanism of
this process on AKCN is unclear and needs to be studied further.
It is interesting to note that the peroxidase-like activity of AKCN
is specific to TMB only, not effective to ABTS that is a common
substrate for peroxidase enzymes (Supplementary Figure 14).
This might be ascribed to the electrostatic repulsion between the
negatively charged AKCN (see Supplementary Figure 6) and
anionic ABTS. The peroxidase mimicking activity of AKCN
specific to TMB indicates that the modified structure of AKCN
facilitates the selective electron transfer from TMB to H2O2.
Inspired by the higher affinity of AKCN to H2O2 in peroxidase-
like activity, a colorimetric H2O2 detection with a low detection
limit of 0.015 mM was performed (Supplementary Figure 15). As
demonstrated above, AKCN possesses both GOx-mimicking and
HRP-mimicking behaviuors. This motived us to perform the
colorimetric detection of glucose in cascade reactions (sequential
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combination of both behaviours) through the in situ H2O2

production from AKCN-catalysed glucose oxidation.

Enzyme-like cascade reactions in batch and microfluidic
modes. Based on the above GOx- and peroxidase-like activities,
the artificial enzymatic cascade reaction carried out by the
bifunctional AKCN, instead of GOx-HRP bi-enzymatic reaction,

was comparatively tested for glucose detection in a batch and a
microfluidic reactor as illustrated in Fig. 7a, c. In the batch reactor
with continuous O2 purging, H2O2 was generated through the
photocatalysis of AKCN/glucose for 20 min under visible light
irradiation (λ ≥ 420 nm). The in situ generated H2O2 in the
photo-stage was then consumed in the following dark-stage
where TMB is oxidized by H2O2 on AKCN. The correlation
between [glucose] and [H2O2] generation after the photo-stage in
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the reactor was successfully confirmed (Supplementary Fig-
ure 16). After the TMB injection, the in situ generated H2O2 was
subsequently depleted by the peroxidase-mimicking action of
AKCN with simultaneous appearance of blue colour (images
inset, indicating the production of ox-TMB)52. Similar to the
GOx-peroxidase-coupled enzymatic system, the cascade enzy-
matic mimicking was successfully achieved in the combined
system of (1) AKCN/glucose/hv with in situ production of H2O2

and (2) AKCN/H2O2/TMB (dark). As a result, the production of
ox-TMB (monitored by absorption at 652 nm) gradually
increased with the glucose concentration ranged from 0.01 M to
1M (Fig. 7b), and a good linearity was established in the range of
0.01M < [glucose] < 0.3 M (Fig. 7b inset), which was sensitive
enough (with a limit detection of 0.07 mM) to distinguish
between the healthy (3–8 mM) and diabetic body (9–40 mM) by
monitoring the blood glucose level50,53.

The above enzyme-mimicking cascade reaction can be more
facilitated with enhanced mass transfer in a continuous flow
microfluidic reactor, which enables to miniaturize the system as a
portable real-time monitoring platform54. For this purpose, a
feasible microfluidic device for glucose detection in a small volume
was fabricated by stacking a PDMS substrate with AKCN-coated
flow channels (5 mm width, 0.044mm height, 30 mm length) onto
a slide glass (Fig. 7c and inset, see experimental method and
Supplementary Figure 17). The cascade reaction was conducted
along two flow channels that are serially connected with 30-mm-
long channel; the former has the AKCN-coated channel under
visible light irradiation (GOx-mimicking part) and the latter mixes
the in situ generated H2O2 (from the former) with TMB injection
(HRP-mimicking part). In other words, the mixed glucose-O2

from the flow vessel was transferred into the flow channel by a
syringe-pump, where the AKCN (0.25mg per chamber) immo-
bilized on the channel wall catalyses the H2O2 generation under
visible light irradiation. The outlet flow from the first channel was
continuously fed into the second flow channel (shielded from the
irradiation) for the subsequent peroxidase-mimicking reaction on
AKCN. TMB was introduced through a separate inlet in the head
of the second flow channel. The solution in the second flow
channel was immediately turned blue (Supplementary Figure 17e)
due to the formation of ox-TMB and the resulting outflow out of
the channel can be analysed for its absorbance at 652 nm in real
time. Since H2O2 was equilibrate proportion to the oxidized
glucose (one molar molecule of glucose converted to one molar
H2O2) in GOx mimicking, the further continuously catalysis of
quantitative [TMB] with accurate [H2O2] (detected from DPD
method) might offer a promising indicator in glucose assay
originated from the calibration curve of [glucose] against the TMB
and H2O2 (Supplementary Figure 18).

The initial reaction rate (vi) can be calculated from the plot of
the ox-TMB absorbance as a function of time (Fig. 7d). The vi was
linearly correlated with [glucose] (Fig. 7e), which enables the
quantification of the glucose concentration from the calculated
kobs (1.7 Abs. s−1 mM−1). It is worth noting that this analytical
method based on the photonic microfluidic cascade reaction can
be used to detect the unknown glucose concentration from the
calibration curve within 30 s by measuring vi (Abs= ɛcl, ɛ=
39000 L·mol−1·cm−1 for TMB). It exhibited the limit of detection
around 0.8 μM in microfluidic device, which is sensitive enough
for practical application since the clinical glucose concentration is
greater than 1 mM. The microfluidic biomimetic catalysis
exhibited the superior turnover frequency (9.1 h−1) of H2O2

generation as 5.3 times high as that of the batch process (1.7 h−1),
which can be ascribed to the intrinsic characteristics of the
microfluidic reactors such as efficient mass transfer and high
surface-to-volume ratio (see detailed discussion in Supplementary
Note). While all the previously reported bifunctional nanozymes

required hours for glucose detection (Supplementary Table 2), the
present AKCN-based nanozyme employed in a microfluidic
device exhibited a much faster cascade catalysis (~30 s) and a
lower detection limit (0.8 μM). In addition, the detection limit of
the microfluidic device is orders of magnitude lower than that of
the batch reactor. The merits of the present
nanozyme–microfluidic sensor are highly desirable for point-of-
care diagnosis. Overall, this study successfully demonstrated the
performance of the microfluidic reactor for biomimetic cascade
catalysis reaction as a miniaturized tool for rapid and facile real-
time monitor of glucose.

Discussion
The successful performance of AKCN that achieved the ideal
efficiency of about 100% AQY implies that the photogenerated
charge carriers in AKCN are efficiently separated with directional
charge migration and selective reduction of O2 to H2O2. To
understand how the modification of GCN with KCl and KOH
modified the structure and charge distribution, density functional
theory (DFT) calculations were performed. The optimized loca-
tion of Cl, K, and OH in the carbon nitride structure and the
relative energy of each modified GCN structure are shown in
Supplementary Figs. 19–22. It is evident that the electron-rich
nitride pots in the three-fold N-bridge linking triazine units are
liable to capture and confine the alkali cations of K+ in the
adjacent layers through the ion-dipole interaction55. The K-
doped GCN structure with weak interlayer bridging made a
relatively large number of electrons accumulated on the first layer
(–2.34 e of layer charge) than on the second one (–0.99 e of layer
charge) (Fig. 8b), whereas the Cl-doping in GCN did not induce
such localization of electrons between the layers (Fig. 8a). As a
result, the K-GCN exhibited a high value of the charge difference
between the adjacent layers (ǀΔqǀ= 1.35 e) while that on Cl-GCN
(ǀΔqǀ= 0.06 e) is insignificant. The presence of doped K atoms
induces the anisotropic electron density distribution, which is
preferably accumulated on the first layer but the additional
doping of Cl atoms makes the electron distribution more
balanced between the layers (Fig. 8c)37,46,55. In other words, when
both K and Cl are copresent in the carbon nitride structure, the
K-induced electron density polarization can be counterbalanced
by Cl to lower ǀΔqǀ (0.16 e) significantly. This implies that the
charge transfers between the layers in KCl-doped carbon nitride
are more facilitated than those in pristine GCN, which may
provide an explanation for its higher photocatalytic activity.
When OH groups are additionally introduced in AKCN (noted as
KCl-OH-GCN in Fig. 8d), the DFT calculation predicts that the
hydroxyl group is preferably bonded to the surface carbon
(Supplementary Figure 22) with inducing an outstanding electron
depletion region around the OH group (blue colour) on the first
layer (see Fig. 8d). This further decreases ǀΔqǀ from 0.16 e
(Figs. 8c) to 0.06 e (Fig. 8d), which should help the facile charge
transfer between adjacent layers. It should be noted that the
formation of charge delivery channels in AKCN is critically
important to extend the π-conjugated system for facilitating the
directional carrier migration between the adjacent layers and
assisting the interlayer charge separation37,46.

The DFT calculation also shows how the presence of OH group
changes the charge distribution over different atoms. The
enlarged top view of KCl-OH-GCN (Fig. 8e) shows that the
surface carbon atom attached to the OH group carries more
positive charge (1.43 e) than the corresponding carbon atom in
the pristine GCN (0.99 e in Fig. 8f), furthered to be arising for the
neighbour N atoms carry more negative charges (–1.09 e and
–1.08 e in Fig. 8e) compared with those on the pristine GCN
(–0.95 e and –1.01 e in Fig. 8f)56. Based on this calculated result,
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the proposed reaction scheme is illustrated in Fig. 8g. Upon
photoexcitation (Fig. 8g–I), electrons and holes surviving from
the fast recombination migrate onto the surface of AKCN
(Fig. 8g-II). The holes are preferentially trapped at the N sites
(electron rich) adjacent to the C–OH group in the melem unit
and subsequently abstract two H atoms to form >NH+ sites (blue
H atoms in Fig. 8g-III) through the glucose oxidation to gluconic
acid57. On the other hand, a dioxygen molecule reacts with two
electrons trapped in the melem unit, which concurrently abstracts
two protons from the >NH+ sites (protonated through glucose
oxidation), and consequently generates H2O2 as a product
through the intermediate of 1,4-endoperoxide. The sequential
reactions of holes and electrons regenerate the melem unit.
Therefore, the synergistic improvement of spatial charge

separation and local polarization between the interlayers and in-
plane is critical for efficient H2O2 production on AKCN.

On the other hand, in the peroxidase mimicking part, the
electrophilic carbon atom in the cyano group abstracts an O atom
from H2O2 and subsequently an H atom from TMB (hydroxyl
group formation, bottom part of Fig. 8g–v) with generating ox-
TMB58. The resulting hydroxyl group further abstract an H atom
from another TMB to yield a water molecule and another ox-
TMB (hydroxyl group depletion, upper part of Fig. 8g–v). The
above two ox-TMB can be protonated in acid buffer to form
bluish ox-TMBH+. Overall, two TMB molecules are oxidized by
one molecule of H2O2 that is in situ photogenerated on bifunc-
tional AKCN, consistently with their higher affinity of H2O2 than
TMB in the peroxidase-mimicking activity. The combined
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processes (photogeneration of H2O2 coupled TMB oxidation in
the dark) occurring on AKCN successfully complete the enzy-
matic cascade reaction.

In summary, a metal-free nanozyme based on modified GCN
demonstrated bifunctional enzyme-mimicking behaviours, which
combined the roles of oxidase (GOx) and peroxidase (HRP) in a
sequential light-dark process. With the intrinsic GOx-like
mimicking, the in situ generated H2O2 from photocatalytic oxi-
dation of glucose served for the subsequent peroxidase-
mimicking part. The bifunctional AKCN exhibited a near 100%
quantum efficiency of H2O2 generation and enabled the coupled
cascade reactions for colorimetric glucose detection. In addition,
such biomimicking catalytic process could be highly accelerated
in a microfluidic device, which enabled the real-time monitor of
H2O2 and glucose with a detection limit of 0.8 μM in 30 s. Our
results not only certify the successful modification but also clarify
the importance of charge separation for cascade reaction with
combination of theoretical and experimental fundamental insight.
This study provides a design strategy for bifunctional nanozyme
capable of generating and subsequently utilizing in situ H2O2

under ambient condition, which can be potentially applied to a
variety of eco-friendly and biomimicking processes involving
H2O2.

Methods
Materials. All chemicals were purchased from Sigma–Aldrich or Alfa–Aesar with
the highest purity and used without further treatment. Melamine, alkalis chloride
and potassium halide, 3,3’,5,5 tetramethylbenzidine dihydrochloride (TMB) were
bought from Sigma–Aldrich and used as received. Hydrogen peroxide (35 wt %)
was bought from Junsei. Milli-Q water was used for all the experiments.

Photocatalysts preparation. GCN was simply synthesized as following process36–38.
1.5 g of melamine was put into porcelain cup with a cap and calcined at 550 °C for
4 h with a ramping rate of 2.2 °Cmin-1. After heating, the resulting product was
gently grounded and treated under ultrasonication for 3 h as an aqueous solution
(1 g L−1). Then the powder was filtered, washed, and dried at 80 °C for further
tests. Alkalized GCN (ACN) was synthesized by similar procedure to GCN, but the
proper amount (0.3, 1.0, 2.0, 3.0, 4.0 mmol) of potassium hydroxide was mixed
with melamine and grounded together before calcination process. For further
comparison of the effect from alkaline metals, 2.0 mmol sodium hydroxide or 2.0
mmol barium hydroxide were, respectively, mixed with melamine instead of
potassium hydroxide. K-incorporated GCN (KCN) was synthesized by similar
procedure to GCN but the proper amount (0.02, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2 mol)
of potassium chloride was mixed with melamine and grounded together before
calcination. For further comparison of the effect from alkaline metals, 0.08 mol
alkalis chloride (ammonium chloride, sodium chloride, barium chloride,) or 0.08
mol potassium halide (potassium fluoride, potassium bromide, potassium iodide,
potassium sulfate) were, respectively, mixed with melamine instead of potassium
chloride. Optimized GCN (AKCN) was synthesized by similar procedure to GCN,
but the proper amount of potassium hydroxide (2.0 mmol) and potassium chloride
(0.08 mol) was mixed with melamine and grounded together before calcination
process.

Photocatalysts characterisation. The phase structures of resultant catalysts were
characterised by a PANalytical X’Pert diffractometer with an X’Celerator detector
using Cu Kα line (1253.6 eV) and ATR-FTIR spectroscopy (Thermo Scientific
Nicolet iS50 FTIR/ATR) on a ZnSe crystal. Diffuse reflectance UV/visible
absorption spectra (DR-UVS) were obtained by Shimadzu UV-2600 with an
integrating sphere attachment. The reference material of BaSO4 was used before the
measurement. Zeta potentials of the aqueous suspension (10 mM of NaNO3) with
catalysts were conducted through an electrophoretic light scattering spectro-
photometer (ELS 8000, Otsuka) with controllable pH from HClO4 and KOH. The
surface atomic properties were analysed by X-ray photoelectron spectroscopy
(XPS) by Theta Probe AR-XPS System (Thermo Fisher Scientific, U.K.) with an X-
ray source using monochromated Al Kα (hν= 1486.6 eV) at KBSI Busan centre.
The transmission electron micrographs (TEM) and electron energy loss spectra
(EELS) mapping were taken by Cs-corrected JEM-2200F microscope (JEOL) at
NINT (Pohang, Korea).

Photogeneration of H2O2. The aqueous suspension (distilled water or 0.1 M
buffer phosphate) containing the catalyst (0.5 g L-1) and ethanol (10 vol%) was
prepared at pH 3, followed by sonication and O2 purging for 30 min. The

photocatalytic H2O2 generation was conducted under visible light irradiation (λ ≥
420 nm) with continuous O2-purging. The colorimetric method employing N,N-
diethyl-1,4-phenylene-diamine sulfate (DPD, 97%, Aldrich) reagent was used to
determine the concentration of H2O2. The sample aliquots were collected inter-
mittently during the reaction and then mixed with phosphate buffer, DPD solution,
and peroxidase (POD, horseradish, Aldrich) under vigorous stirring. The pro-
duction of H2O2 was monitored by measuring the absorbance at 551 nm using a
UV/visible spectrophotometer (Libra S22, Biochrom). The detailed method is
described elsewhere32,33. The apparent quantum yield (AQY) was calculated
through the equation (eq. 6),

∅AQE ¼ ðNumber of producedH2O2 moleculesÞ ´ 2
Number of incident photons

´ 100 ð6Þ

where the incident wavelength was adjusted by a monochromator (Newport, Oriel
77250) and the light intensities was measured using a low-power detector (New-
port, 818-UV).

Electrochemical analysis. The transient photocurrent and electrochemical
impedance spectroscopy were done by the catalysts coated on ITO glass via spin
coating. The measurements were conducted on a potentiostat (Gamry, Reference
600) by three electrode system, where Pt wire as counter electrode, Ag/AgCl as
reference electrode, and catalyst coated on ITO as working electrode. 0.2 M Na2SO4

were used as an electrolyte and pH were adjusted to 3 under continuous Ar
purging. The slurry photocurrent measurements were carried out in three electrode
system, consist of Pt wire, graphite rod, and Ag/AgCl as working, counter and
reference electrodes, respectively. Photocatalysts (1 g L-1) were suspended in aqu-
eous solution consisting 1 mM NaClO4 (electrolyte) and 1 mM Fe3+ (electron
shuttle) at pH 1.7 with a bias of +0.7 V (vs. Ag/AgCl).

Electrocatalytic oxygen reduction reaction (ORR) was investigated through
linear sweep voltammetry (LSV) (using a Gamry Reference 600 potentiostat) in
KOH electrolyte (0.1 M) under continuous O2 purging. To prepare the catalyst-
coated electrode, the catalyst slurry with Nafion (0.5 wt%) was loaded on the
surface of glassy carbon disk (815 µg cm−2). The resultant working electrode was
scanned at a rate of 10 mV s−1 to cathodic direction in LSV. The reference and
counter electrodes were Ag/AgCl (in saturated KCl) electrode and platinum wire,
respectively. The rotating disk analysis was performed at the speed of 400–1600
rpm during the ORR. The electron transfer number in ORR can be calculated from
the slope of Koutecky–Levich plot, which was constructed according to the
Koutecky–Levich equation (eq. 7).

1
j
¼ 1

jd
þ 1
jk
¼ 1

Bω1=2
þ 1
jk
; B ¼ 0:62nFC0 D0ð Þ2=3ν�1=6 ð7Þ

Where j indicates current density (mA cm−2), jd for diffusion limited current
density (mA cm−2), jk for kinetic current density (mA cm−2), ω for angular
velocity of the disk electrode (rad s−1), n for electron transfer number (n), F for
Faradaic constant (96485 C mol−1), C0 for concentration of dissolved oxygen in the
0.1 M KOH (1.2 * 10−3 mol L−1), D0 for diffusion coefficient of dissolved oxygen in
the 0.1 M KOH (1.9 * 10−5 cm s−1), ν for kinematic viscosity of the 0.1 M KOH
(0.01 cm2 s−1).

The transient open-circuit voltage decay (OCVD) measurements were taken
under chopped light irradiation. The average lifetime of the photogenerated
carriers (τn) were obtained from the OCVD according to the equation (eq. 8):

τn ¼ � kBT
q

dVoc

dt

� ��1

ð8Þ

Where kB is the Boltzmann constant, T is the Kelvin temperature (the product kBT
is the thermal energy), q is the unsigned charge of an electron and dVoc/dt is the
derivative of the open-circuit voltage transient.

Oxidation of glucose. The glucose oxidation was performed in a quartz cuvette (5
mL) containing a solution of glucose with different concentrations (0.01, 0.025.
0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1, and 2M) and 2 mg photocatalyst in 4 mL
phosphate buffer solution (0.1 M, pH 7). The photoreaction tests were done under
continuous O2-purging with 30 min irradiation. After filteration, the colorimetric
sensing of photogenerated H2O2 was analysed for the detection of glucose oxida-
tion. For further comparison of the selectivity, the same photoreaction was carried
out as glucose except replacing the glucose by 0.1 M fructose, lactose, and maltose,
respectively. The effluent of CO2 in the closed reactor with O2-saturated glucose
buffer solution (1 M) was tested from the calibrated gas chromatography with
flame ionization detector (GC-FID, Agilent).

Peroxidase-like activity mimic. In a typical peroxidation reaction, 200 μL of
substrate (TMB, 4 mM) was added to 3.8 mL acetate buffer solution (0.1 M, pH 4)
containing 3 mM H2O2 (800 μL) and 0.5 mgmL−1 photoenzymes. During the 10
min incubation at 25 °C, the kinetics of peroxidase-like activity was measured by
monitoring the absorbance at 652 nm after filteration, which represents the
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concentration of the oxidized product of TMB. The optimized condition was
modulated from the variable pH and temperatures. To measure the steady-state
kinetics, the various concentrations of substrates (H2O2, 3 mM) and H2O2 (TMB, 4
mM) were used, separately. For colorimetric detection of H2O2, 200 μL of substrate
of TMB (4 mM) was added to 3.8 mL acetate buffer solution (0.1 M, pH 4) con-
taining 0.5 mg mL−1 photoenzyme and H2O2 with various concentrations. After
incubation for 10 min in dark, the concentrations dependent blue colour at 652 nm
was recorded via UV–Vis spectroscopy. The kinetic parameters were calculated
using the Michaelis–Menten equation (eq. 9):

V ¼ Vmax S½ �= Kmþ S½ �ð Þ ð9Þ

where [S] is the concentrations of substrates.

Enzymatic cascade reaction. In a quartz cuvette, 2 mg photocatalyst was added
into 2 mL phosphate buffer solution (0.1 M, pH 7) containing different con-
centrations of glucose. After 20 min irradiation with continuous O2-purging, 200
μL TMB (4 mM) and 1.8 mL acetate buffer solution (0.1 M, pH 4.0) were added
into above reaction solutions, which were then incubated for another 10 min in
dark. The final reaction solution was recorded by UV–Vis spectroscopy after
filteration.

Enzymatic cascade reaction in a microfluidic photoreactor. The AKCN were
immobilized on the poly(dimethylsiloxane) (PDMS) wall with 3-
glycidoxypropyltrimethoxysilane (GLYMO) brush, originated from the shadow-
mask of lithograph defined shape and location in spatial distribution, and finally
sealed with the packed slide glass. The microfluidic device was systematically set up
with light source and syringe-pump connection through the silica fibers (Supple-
mentary Figure 17a). For the redox-coupled enzymatic mimicking in separated
chambers, the chip was positioned on a home-built holder to control the light
irradiation on required area. The reaction volume are consist of a length of 30 mm,
a depth of 0.044 mm from a cross section, and a wide of 5 mm (Supplementary
Figure 17c and 17d). The enzymatic cascade reaction in microfluidic photoreactor
were carried out as the same conditions as aforementioned batch process. A
phosphate buffer solution (0.1 M, pH 7) containing different concentrations of
glucose was pumped (12 µLmin−1) into the microfluidic channels from the
solution inlet. Meanwhile, the continuous O2 was pumped (12 µLmin−1) into the
flow channels from the adjacent gas inlet leading to mix with the glucose solution
at cross point. As the O2-solution flowed into the paralleled reactive chamber, the
GOx mimicking occurred on AKCN (0.25 mg chamber−1) under the back irra-
diation (seen the image of setup in Supplementary Figure 17e). For the real-time
detection of glucose in the sequential processes, the TMB solution (4 mM) was
pumped (12 µLmin−1) from the downstream inlet for the continuous peroxidase-
like activity in the individual chamber (0.25 mg chamber−1, AKCN) without
irradiation. The reactive solution was spilled from the outlet and collected for the
ox-TMB detection through the colorimetric method. As the same procedure
without TMB injection, the concentration of H2O2 in the spilled solution was
determined from DPD method. The turnover frequency (TOF) in the flow
chamber and batch system was calculated based on the H2O2 generation in each
duration as well as the assumption of active sites from all samples. All experiments
were conducted at room temperature. The vi values were calculated by least-squares
fitting the equation (eq. 10) to the experimental data,

TMB½ � ¼ vi ´ t ð10Þ

while kobs was calculated by fitting the equation (eq. 11):

vi ¼ kobs ´ Glucose½ � ð11Þ

Computational details. Density functional theory (DFT) calculations were con-
ducted using the Vienna Ab Initio Simulation Package (VASP)59,60. The Perdew-
Burke-Ernzerhof (PBE) functional, which is based on the generalized gradient
approximation (GGA), was used to treat the exchange-correlation energy61. The
semi-empirical DFT-D3 method was employed to consider dispersion force62. The
kinetic cutoff energy of 400 eV was employed for the expansion of the plane wave.
A conjugate gradient algorithm was applied to relax the geometries until the forces
on all the unrestricted atoms were less than 0.03 eV Å−1. The width of Gaussian
smearing for the occupation of electronic levels is 0.2 eV. The convergence criterion
for electronic structure iteration was set to be 10-4 eV. The Brillouin zone is
sampled with a 5 × 5 × 3 for a (1 × 1 × 2) supercell of bulk GCN and 3 × 3 × 1 for
(2 × 2) slab structure using a Monkhost–Pack scheme63. The relaxed structural
parameters of bulk GCN are a= b= 7.124, c= 12.328. We used the three-layer
slabs and the vacuum of 15 Å. The bottom first layer was fixed in their bulk
positions, and the other top two layers were allowed to be fully relaxed. To
quantitatively compare the degree of charge transfer, a Bader charge analysis has
been carried out64–66.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets within the article and Supplementary Information of the current study are
available from the authors upon request.
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