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Abstract

Ginseng has been shown to produce a cognitive improvement effect. The key molecular components in ginseng
that produce pharmacological effects are ginsenosides. Previous studies reported a memory improvement effect of
a few major ginsenosides. However, the identity of specific minor ginsenosides mediating such function remains
unknown. Here, we report that a minor ginsenoside F1 improves memory function in APPswe/PSEN1dE9 (APP/PS1)
double-transgenic Alzheimer’s disease (AD) model mice. After 8-wk oral administration of F1 jelly, we observed that
spatial working memory, but not context-dependent fear memory, was restored in AD mice. To search for a
possible underlying molecular and cellular mechanism, we investigated the effect of F1 on Aβ plaque. We observed
F1 administration reduced the Aβ plaque area and density in the cortex, but not in the hippocampus of AD mice.
Next, we tested for the effect of F1 on the expression level of key molecules involved in learning and memory.
Results from Western blot assay revealed that an abnormally reduced level of a phosphorylated form of CREB in the
hippocampus of AD mice was restored to a normal level by F1 administration. Moreover, in the same animals,
BDNF level was augmented in the cortex. Our results, therefore, suggest that minor ginsenoside F1 constitutes a
promising target to develop therapeutic agents for AD.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease
characterized by a loss of neurons and severe memory
impairment. Because AD has become a major social
problem globally in an accelerating aging society [1],
there has been a dramatic increase in the need for effect-
ive treatments that restore or improve memory function.
Rescue of the functional deficit is the most important
clinical endpoint for patients with approaching the onset
of overt dementia [2]. Therefore, identifying a natural
compound that is effective to improve memory function
in AD is urgently needed.
Ginseng has been utilized as a natural medicinal herb

for thousands of years in the East. Recent researches
have reported a wide range of therapeutic effects of gin-
seng, including tumor suppression [3, 4], anti-aging [5],

anti-oxidation [6], and cognitive improvement [7–10].
The key molecular components in ginseng that produce
such pharmacological effects are ginsenosides. Ginseno-
sides are natural steroid glycosides, which are abundant
in the root of ginseng [11]. Ginsenosides are classified
into major and minor ginsenosides, which are produced
by the deglycosylation of major ginsenosides [12–14].
After oral administration, major ginsenosides are converted

into minor ginsenoside forms by hydrolyzation of the 6- and
20-glucoside bond by intestinal microflora and then absorbed
into the body [12]. Non-metabolized major ginsenosides have
a low absorption rate in the body and are rapidly eliminated
from it [15, 16]. The metabolic rate of intestinal microflora is
very low. Moreover, since the composition of intestinal bac-
teria varies from individual to individual, the pharmacological
effects of taking major ginsenosides vary widely from person
to person [17]. In contrast, minor ginsenosides are absorbed
in the intestine and exert actual pharmacological effects [15].
Therefore, it is critical to identify a single minor ginsenoside
that produces a therapeutic effect. However, due to the tech-
nical difficulty to obtain a sufficient amount of minor
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ginsenosides from ginseng for research purposes, most of the
extant literature has focused on major ginsenosides for their
pharmacological effects. Therefore, a minor ginsenoside with
cognitive improvement function in an AD model remains
undetermined.
Because major ginsenoside Rg1, the precursor of F1,

has been reported to reduce amyloid-beta (Aβ) plaque,
modulate neurite outgrowth, and improve cognitive
function [18–20], we hypothesized that F1 constitutes a
promising candidate. Recently, our research group devel-
oped a novel system that enabled mass production of
minor ginsenoside F1 from Rg1 [21]. Facilitated by this
technical innovation, in the present study, we investi-
gated whether F1 has a therapeutic effect on AD by
using AD model mice.

Results
Ginsenoside F1 rescues memory impairment in 14-month-
old APP/PS1 mice
To test the cognitive improvement effect of F1 in AD, we
utilized APPswe/PSEN1dE9 (APP/PS1) double-transgenic
AD model mice. The APP/PS1 transgenic mouse expresses
chimeric mouse/human amyloid precursor protein (Mo/
HuAPP695swe) and a mutant human presenilin 1 (PS1-
dE9), which accumulate amyloid beta burden in CNS from 6
to 7months of age [22–25]. A deficit of learning and mem-
ory [26–28] has been reported for these AD model mice.
To assess whether or not F1 can rescue memory im-

pairment in APP/PS1 mice, we conducted a Y-maze test
following 8-wk oral administration of F1 jelly (20 mg/kg/
day, see Methods) (Fig. 1a). The Y-maze test enables us
to test spatial working memory ability, which is mainly
dependent on both the hippocampus and cortex region
[29–31]. During the Y-maze test, the mice freely moved
around the identical three arms, and the spontaneous al-
ternation percentage among the three arms was mea-
sured as an index of spatial working memory ability. We

separated mice into three groups: F1-treated APP/PS1;
vehicle-treated APP/PS1; and wild type littermate con-
trol group. The percentage of spontaneous alternation
was significantly lower in AD mice compared to that in
wild type control mice, indicating memory impairment.
Importantly, such a decrease of spontaneous alternation
returned to normal level in F1-treated AD mice. This re-
sult indicates that F1 improved spatial working memory
ability in AD mice (Fig. 1b).
To examine the specificity of the memory improvement

effect of F1, we next performed contextual fear conditioning
(CFC), which comprised a hippocampus-dependent associa-
tive emotional memory [32]. It was reported in AD patients
that associated fear-conditioned memory is impaired [33].
The same groups of mice used for the Y-maze test were
trained for CFC, and 24-h later tested for long-term memory
recall. Consistent with previous reports [34, 35], CFC mem-
ory was impaired in APP/PS1 mice. However, the F1 admin-
istration did not improve such memory impairment
compared to control mice (Fig. 1c). Taken together, our be-
havioral results suggest that F1 improves working memory
function rather than hippocampal-dependent long term
memory in AD model mice.

Ginsenoside F1 reduces Aβ plaques in the cortex of AD
mice
Aβ deposition in the brain constitutes a key patho-
physiological marker of AD [36]. Such Aβ plaque forma-
tion has been thought to be the main cause of AD
symptoms, including memory deficit, due to its neuro-
toxic effect [37]. Thus, we reasoned that F1 may improve
memory by affecting Aβ plaque. To test this possibility,
the plaque counting assay was conducted with 14-
month-old APP/PS1 mice. We performed immunostain-
ing with 6E10 antibody and thioflavin S (ThS) staining
in the hippocampus and the retrosplenial cortex, which
is known as one of the core network brain regions for

Fig. 1 Ginsenoside F1 rescues spatial working memory impairment in APP/PS1 mice. a Behavior scheme. Ginsenoside F1 or vehicle jelly was
provided for 8 wk. in 12-month-old mice (WT, n = 9; AD-Vehicle, n = 15; AD-F1, n = 10). b Y-maze test. Alternative behavior was impaired in AD
mice, and ginsenoside F1 rescues impaired alternative behavior (one-way ANOVA, F(2,31) = 5.046, P = 0.0127; Tukey post hoc confirmed statistical
significance between groups). c Contextual fear conditioning. Freezing level was significantly impaired in AD mice during the 24-h contextual fear
memory test (one-way ANOVA, F(2,31) = 16.98, P < 0.0001; Tukey post hoc confirmed statistical significance between groups), and ginsenoside F1
did not rescue impairment. n values indicate the number of mice. Data are mean ± s.e.m. *P < 0.05, ****P < 0.0001
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cognitive functions including episodic memory, naviga-
tion, and spatial working memory [38]. 6E10 antibody
detects all species of Aβ plaque and amyloid precursor
protein, while ThS stains the β-sheeted dense core of Aβ
plaque. The area of Aβ burden and the number of Aβ
plaque were measured in the hippocampus and cortex
region. When we compared the area and density of Aβ
plaque in the hippocampal region, no significant difference
in both 6E10 positive and ThS positive plaques was found
between F1- and vehicle-treated APP/PS1 mice (Fig. 2b).
This result indicates no effect of F1 on Aβ plaque in the
hippocampus. In the cortex, there was no change in the
6E10 positive plaques by F1 treatment (Fig. 2c), meaning that
F1 does not affect the total quantity of Aβ plaques. However,
we observed a significant reduction of the ThS positive
plaque area and density in the F1 treated AD mice compared
to control group (Fig. 2c). Therefore, these results show that
ginsenoside F1 inhibits the formation of mature plaques or
induces their disaggregation in the cortex, but not in the
hippocampus, of AD mice.

Ginsenoside F1 rescues the expression level of pCREB in
the hippocampus and increases the expression level of
BDNF in the cortex of APP/PS1 mice
An abnormal decrease of the expression level of the
phosphorylated form of CREB (pCREB) [40–43] and
BDNF [44–46] has been implicated in a deficit of mem-
ory function in AD patients and model mice. Besides,
the previous study reported that recovery of cognitive
deficit in AD model mice is accompanied by a reduction
of Aβ and increase of pCREB and BDNF level [42].
Thus, we investigated whether F1 exerts any effect on
the expression level of pCREB and BDNF. We per-
formed Western blot analysis to determine the expres-
sion level of pCREB and BDNF in the hippocampus and
cortex of 8-month-old APP/PS1 mice following 8 wk. of
F1 administration, as done previously.
Consistent with the extant literature [34, 42, 43], we ob-

served that the pCREB level was decreased in the hippo-
campus of APP/PS1 mice. Such abnormal decrease,
however, was restored to the normal level by F1 administra-
tion (Fig. 3b). The expression level of total CREB was not
significantly changed in all three groups (Fig. 3c), indicating
the specific effect of F1 on the pCREB level. Different from
pCREB, we found that the expression level of BDNF was
not significantly different in the hippocampus of all groups
(Fig. 3d). In the cortex, although there were no significant
differences in the expression level of pCREB and total
CREB among the three groups (Fig. 3f, g), we observed that
the BDNF expression increased above normal expression
level by F1, as shown in the AD-F1 group (Fig. 3h). Along
with the results of Aβ plaque, these results suggest that the
recovery of pCREB and the increase of BDNF constitute

possible mechanisms of memory improvement by F1 in
AD model mice.

Discussion
In this study, we report for the first time that the administra-
tion of minor ginsenoside F1 rescues memory impairment in
APP/PS1 double transgenic mice which are known as Alz-
heimer’s disease model mice. Results from the Y-maze test
showed spatial working memory was recovered by F1 in AD
mice. To find out the possible underlying mechanism, we ex-
amined an effect of F1 on Aβ plaque in the retrosplenial cor-
tex of AD mice. We observed a significant reduction of the
ThS positive plaques, but not the 6E10 positive plaques.
These results suggest that F1 inhibits the formation of dense
Aβ plaques or elicits their disaggregation without changing
the total quantity of Aβ plaques in the cortex. Given that the
working memory is dependent on the function of the cortex,
the reduction of dense Aβ plaques in the cortex may explain
the rescue of spatial working memory by F1 in AD mice. In
addition to the Aβ plaques, western blot results in this study
show F1 increases the level of BDNF above normal levels in
the cortex. Previous studies show that the BDNF level is dir-
ectly correlated with AD severity [47] and the increase of
BDNF level is effective to improve cognitive function in AD
[48, 49]. Therefore, the increase of BDNF expression in the
cortex is also a possible mechanism explaining the improve-
ment of working memory by F1. In the hippocampus, al-
though the number of aggregated forms of Aβ detected with
ThS was slightly reduced (P= 0.0596), we did not observe
any significant effect of F1 on Aβ plaques. Considering the
different effect of F1 on Aβ plaques in the cortex and hippo-
campus, a plausible explanation for the difference of F1 effect
on Y-maze versus contextual fear conditioning might be the
specific reduction of Aβ plaques only in the cortex. Western
blot results showed F1 rescues the pCREB level in the hippo-
campus to the normal level, but it did not affect the expres-
sion level of BDNF. Because contextual fear memory was
not improved by F1, it is likely that the restoration of the
pCREB level in the hippocampus may not be sufficient to
rescue the deficit of hippocampus-dependent memory in AD
model mice.
From the western blot result, we failed to see the signifi-

cant changes of pCREB in the cortex and BDNF in the
hippocampus. In our study, western blot analyses were
done using 8-months-old mice while behaviors were tested
in much older mice. Given the age-dependent progress of
AD pathology [50], the relatively young age condition may
explain why we failed to see the significant changes of p-
CREB in the cortex and BDNF in the hippocampus. Given
the mutually positive effects on the expression of BDNF
and CREB [51], it is expected that increase of BDNF may in
turn cause the same an increase of pCREB level in the cor-
tex after F1 treatment. Similarly, recovery of pCREB level
may also lead to an increase of BDNF in the hippocampus.
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However, these are not what we found. One possible ex-
planation for such discrepancy is that the mutually positive
regulation mechanism does not work properly in the AD
brain and F1 produces its effect on pCREB and BDNF
through other molecular pathways [52–55].
Previous studies reported Rg1, the precursor of F1, res-

cues cognitive function in AD mice regardless of behavior
tasks including Morris water maze, radial arm maze, Y-
maze, contextual fear conditioning [7, 19, 56, 57]. More-
over, the Rg1 administration showed a reduction of Aβ pla-
ques in the brain and recovery of memory-related genes
like pCREB or BDNF in the hippocampus [19, 56, 57]. In

this study, we observed the specific effect of F1 in the Y-
maze task which is mainly dependent on the cortex. Con-
sistently, F1 reduced Aβ plaques and increased BDNF ex-
pression levels in the cortex but not in the hippocampus.
These results suggest that the therapeutic effect of F1 on
AD is specific to the cortex, compared to the global effects
of Rg1. F1 may have an advantage over Rg1 in terms of the
delivery method. In most research, Rg1 was administered
via intraperitoneal injection because of the low absorption
rate in the intestine of major ginsenosides, a limitation of
using Rg1 as a drug or health supplement [15, 16]. How-
ever, we show here that F1 can be delivered by oral

Fig. 2 F1 reduces Aβ plaques in the cortex of APP/PS1 mice. 12-month-old APP/PS1 mice were orally administered F1 (20 mg/kg/day; n = 9) or
vehicle (n = 6) for 8 wk. a 6E10-stained Aβ plaques in the hippocampal region (first row) and the retrosplenial cortex region (second row), red;
ThS-stained Aβ plaques in the hippocampal region (third row) and the retrosplenail cortex (fourth row), green. b In the hippocampal region, the
percentage of 6E10 positive plaque area (two-tailed Student’s t-test, t(13) = 0.8877, P = 0.3908), the density of 6E10 positive plaques (two-tailed
Student’s t-test, t(13) = 0.7997, P = 0.4382), the percentage of ThS positive plaque area (two-tailed Student’s t-test, t(13) = 1.217, P = 0.2453), and the
density of ThS positive plaques (two-tailed Student’s t-test, t(13) = 2.065, P = 0.0594); (c) In the retrosplenial cortex region, the percentage of 6E10
positive plaque area (two-tailed Student’s t-test, t(13) = 0.4549, P = 0.6567), the density of 6E10 positive plaques (two-tailed Student’s t-test, t(13) =
0.7706, P = 0.4547), the percentage of ThS positive plaque area (two-tailed Student’s t-test, t(13) = 2.238, P = 0.04334), and the density of ThS
positive plaques (two-tailed Student’s t-test, t(13) = 2.298, P = 0.0388); The brain schematic diagram [39] shows the brain region of hippocampal
and retrosplenial cortex images. n values indicate the number of mice. Data are mean ± s.e.m. *P < 0.05
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administration to restore memory impairment with redu-
cing Aβ plaque and increasing pCREB and BDNF expres-
sion in AD mice, and thus is a more promising candidate
to treat AD.
Considering that synthetic compounds often cause un-

wanted side effects in many cases, the identification of a
natural compound with cognitive improvement function
is invaluable to develop medicinal drugs or health sup-
plement foods not only for aged people but also for AD
patients. Our results provide evidence that minor ginse-
noside F1 improves memory function in AD model
mice. Therefore, F1 is a promising target to develop
therapeutic agents for memory improvement.

Materials and methods
Animals
APPswe/PSEN1dE9 double-transgenic AD mice with a
B6 × C3 background and B6 × C3 wild type mice were
purchased from the Jackson Laboratory (MMRRC Stock
No. 034829-JAX). Heterozygous males were bred with
wild type females. Offspring were genotyped by using a
standard PCR protocol detecting PSEN1 transgene. Mice
that did not express the transgene were used as wild

type controls. Mice were housed on a 12-h light/dark
cycle at a constant temperature (21–23 °C) and humidity
(40–60%). Food and water were available ad libitum. All
procedures and protocols were approved by the Animal
Ethics Committee at the Korea Advanced Institute of
Science and Technology. All experiments were per-
formed in accordance with the guideline of Institutional
Animal Care and Use Committee.

Preparation of ginsenoside F1
Ginsenoside F1 (> 95% pure) was prepared using an en-
zymatic method from Panax ginseng extract as previ-
ously reported [21] and isolated using Recycling
Preparative HPLC (Japan Analytical Industry Co., Ltd.)
with JAIGEL-ODS-AP column (10 mm, 500 × 20mm id,
Japan Analytical Industry Co., Ltd.).

F1 treatment
To test the effect of F1 on AD, F1 was orally adminis-
trated via gelatin-based jelly at a dose level of 20 mg/kg/
day. Gelatin-based jelly was prepared as previously de-
scribed [58, 59]. For a 1-d dose of jelly, 0.6 mg of ginse-
noside F1 was dissolved in 0.45 ml of 20% Splenda

Fig. 3 Ginsenoside F1 rescues pCREB and up-regulates BDNF expression level in APP/PS1 mice (a–d) Western blot showing expression levels of
pCREB, CREB, and BDNF in the hippocampus. a Representative Western blot. b pCREB expression in WT mice (WT, n = 5), APP/PS1 mice with
vehicle administration (AD-Vehicle, n = 5), and APP/PS1 mice with F1 administration (AD-F1, n = 5) (one-way ANOVA, F(2,12) = 7.623, P < 0.01; Tukey
post hoc confirmed statistical significance between WT group and AD-Vehicle group, P < 0.01; AD-Vehicle group and AD-F1 group, P < 0.05). c
CREB expression levels (WT, n = 3; AD-Vehicle, n = 3; AD-F1, n = 3) (one-way ANOVA, F(2,6) = 4.613, P = 0.0612). d BDNF expression levels (WT, n = 3;
AD-Vehicle, n = 3; AD-F1, n = 3) (one-way ANOVA, F(2,6) = 0.4877, P = 0.6364). e–h Western blot showing expression levels of pCREB, CREB, and
BDNF in the cortex. e Representative Western blot. f pCREB expression levels (WT, n = 3; AD-Vehicle, n = 3; AD-F1, n = 3) (one-way ANOVA, F(2,6) =
1.416, P = 0.3136). g CREB expression levels (WT, n = 3; AD-Vehicle, n = 3; AD-F1, n = 3) (one-way ANOVA, F(2,6) = 1.273, P = 0.3448). h BDNF
expression levels (WT, n = 3; AD-Vehicle, n = 3; AD-F1, n = 3) (one-way ANOVA, F(2,6) = 7.331, P < 0.05; Tukey post hoc confirmed statistical
significance between WT group and AD-F1 group, P < 0.05). The y-axis indicates normalized protein levels relative to the GAPDH control. n values
indicate the number of mice. Data are mean ± s.e.m. *P < 0.05. **P < 0.01. Full-length blots are presented in additional files (See Additional file 1
and Additional file 2)
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solution. F1 solution was further mixed with 1.35 ml of
14% gelatin, 20% Splenda solution, and 0.15 ml choc-
olate-flavoring in a 24-well plate. A piece of jelly (~ 1.9
mg) was provided, and complete intake of jelly was con-
firmed daily.
Mice were 12-months-old when F1 treatment began,

and all the mice were male for behavioral tests and im-
munohistochemistry of amyloid beta plaque. AD mice
and wild type mice were separated into three groups:
F1-treated AD; vehicle-treated AD; and non-treated wild
type mice. After 8-wk administration of F1, behavioral
tests and immunohistochemistry test were performed.
F1 was administered to six-month-old male and female
mice for 8 wk. for Western blot test.

Y-maze
The Y-maze test was performed after 8-wk oral adminis-
tration of F1. Mice were handled for 5 min on 3 d prior
to the behavioral experiments. The apparatus has three
identical arms (30 cm long, 5 cm wide, and 12 cm high
walls) that converge to the center with 120° angles from
each other. At the beginning of the test, the mice were
placed at one end of an arm and allowed to move freely
for 8 min. After the behavioral experiment, mice were
returned back to their home cage. All behavioral proce-
dures were recorded by a video camera, and the se-
quence of entry was manually counted. Entry was
counted when all four paws of the mice were in the arm.
The percent of alternation was calculated as the number
of three consecutive different arm entries over the total
number of entries minus two:

Alternation %ð Þ ¼ number of alternation
total number of entry−2

� 100:

Contextual fear conditioning
For contextual fear conditioning (CFC), mice were han-
dled for 5 min on 3 d prior to conditioning. On condi-
tioning day, mice were placed in a fear conditioning
chamber (Coulbourn Instruments) with a metal grid
floor. Mice were allowed to explore the context for 150
s, and 2 s of 0.5 mA electrical foot shock was delivered
twice (120 s inter-stimulus-interval). Mice were left in
the conditioning chamber for an additional 30 s and
placed back in their home cage. For the contextual fear
memory test, mice were placed back into the same con-
text 24 h after conditioning. Behavior of mice was re-
corded for 5 min, and mice were returned to their home
cage. Freezing was automatically scored using Freeze-
Frame3.0 software (Coulbourn Instruments).

Brain sample preparation
Mice were anesthetized with 2.5% avertin by intraperito-
neal injection. Mice were perfused with phosphate-buff-
ered saline (PBS) and then fixed with cold 4%
paraformaldehyde (PFA). After perfusion, brain samples
were stored in 4% PFA overnight for post-fixation. Fixed
brain samples were immersed in 30% sucrose in filtered
PBS until they sank to the bottom of the vial at 4 °C for
dehydration. Dehydrated brains were fixed on a disk
with OCT compound at − 20 °C. 40-μm thickness sec-
tions of hippocampal tissue were collected using Cryo-
stat (Leica CM1850, Leica Biosystems).

Immunohistochemistry and thioflavin S staining
To visualize amyloid beta plaque in brain sections, amyl-
oid beta was stained by 6E10 and thioflavin S. After
three times of PBS washing, brain sections were blocked
with blocking solution (0.1% BSA, 0.2% Triton X-100,
2% goat serum in PBS). Brain sections were then incu-
bated with rabbit anti-6E10 monoclonal antibody (Bio-
Legend, 803,015, 1:2000) overnight at room temperature.
Next, Alexa fluor-594 conjugated goat anti-rabbit anti-
body (Molecular Probes, A-11037, 1:1000) was used as a
secondary antibody. For thioflavin S staining, brain sec-
tions were incubated for 10 min in 0.0008% ThS dis-
solved in 50% ethanol. Sections were washed with 50%
ethanol and PBS twice each. The sections were mounted
with VECTASHIELD Antifade Mounting Media with
DAPI (H-1200-10, Vector Laboratories) on glass slides.
Images were taken on a slide scanner (ZEISS Axio
Scan.Z1, Carl ZEISS). To analyze the number of amyloid
beta plaque and plaque area, the hippocampus region
and the retrosplenial cortex region of coronal brain sec-
tions (bregma − 1.6 to − 2.4 mm) was analyzed by using
the Image-J program (NIH). Plaques less than 10 μm in
diameter were not scored.

Western blot
To test the effect of F1 on the expression level of pCREB
and BDNF, 8-month-old AD mice and age-matched wild
type mice were used: F1-treated AD (n = 3); vehicle-treated
AD (n = 3); and age-matched non-treated wild type mice
(n = 5). Mice were anesthetized with isoflurane, and brains
were extracted. Hippocampus tissue and whole cortex tis-
sue were collected by dissecting brain (bregma − 1 to − 3
mm), and lysed in 100 μl of ice-cold lysis buffer (50mM
HEPES pH 8.0, 150mM NaCl, 10% glycerol, 1% Triton X-
100, 12mM MgCl2, 20mM EGTA, 10mM NaPPi, 100
mM NaF, 10mM Na-Orthovanadate, 1mM DTT) contain-
ing a protease inhibitor cocktail (Roche, 11,836,153,001).
Total protein concentrations were measured by Bradford
assay. Because CREB and pCREB have almost the same
protein size, they had to be blotted in separate gels. Two
identical protein samples from the same tissue lysate were
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prepared and processed in parallel. Proteins (30 μg per lane)
were resolved by SDS-PAGE, and transferred to PVDF
membranes by using the Trans-Blot Turbo Blotting System
(Bio-Rad). Membranes were blocked by 5% NFDM (nonfat
dried milk) in TNTX buffer (50mM Tris-HCl, pH 7.5, 200
mM NaCl, 0.2% Triton X-100) for 30min at room
temperature. We used 3% BSA instead of 5% NFDM for
blocking membrane that was used to blot pCREB. After
blocking, membranes were incubated with primary anti-
bodies (anti-CREB antibody, Cell Signaling, 9197S, 1:1000;
anti-phospho-CREB (Ser133) antibody, Millipore, 06–519,
1:2000; anti-BDNF antibody, Abcam, ab226843, 1:2000) in
3% BSA overnight at 4 °C. HRP-conjugated goat anti-rabbit
IgG (Millipore, 12–348, 1:2000) was used as a secondary
antibody. Signals were developed with ECL solution (GE
Healthcare, RPN2232) and detected using ChemiDoc MP
imaging system (Bio-Rad). The results were analyzed using
ImageLab software (Bio-Rad). BDNF and GAPDH were
stained on the same membrane after stripping the CREB or
pCREB antibodies using Restore Western Blot Stripping
Buffer (21,059, Thermo Fisher Scientific). As a loading con-
trol, anti-GAPDH antibody (Invitrogen, MA5–15738, 1:
2000) was used. All Western blot data were normalized to
GAPDH expression level for comparison.

Statistical analysis
GraphPad Prism 6 was utilized to obtain graphs and per-
form statistical analysis. To confirm normality of data, we
conducted D’Agostino-Pearson or Shapiro-Wilk test. A
two-tailed, unpaired student’s t-test was performed to
analyze plaque density and area. One-way ANOVA
followed by Tukey’s post-hoc was conducted to analyze the
behavioral task and Western blot assay data. Error bars rep-
resent the s.e.m.

Additional files

Additional file 1: Figure S1. Uncropped western blot images for
hippocampus samples related with Fig. 3a. (PDF 126 kb)

Additional file 2: Figure S2. Uncropped western blot images for cortex
samples related with Fig. 3e. (PDF 132 kb)
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