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Abstract
Use of recombinant glycosidases is a promising approach for the production of minor ginsenosides, e.g., Compound K (CK) and F1,
which have potential applications in the food industry. However, application of these recombinant enzymes for food-grade preparation
of minor ginsenosides are limited by the lack of suitable expression hosts and low productivity. In this study, Corynebacterium
glutamicumATCC13032, a GRAS strain that has been used extensively for the industrial-grade production of additives for foodstuffs,
was employed to express a novel β-glucosidase (MT619) from Microbacterium testaceum ATCC 15829 with high ginsenoside-
transforming activity. A cellulose-bindingmodule was additionally fused to theN-terminus ofMT619 for immobilization on cellulose,
which is an abundant and safe material. Via one-step immobilization, the fusion protein in cell lysates was efficiently immobilized on
regenerated amorphous cellulose at a high density (maximum 984 mg/g cellulose), increasing the enzyme concentration by 286-fold.
The concentrated and immobilized enzyme showed strong conversion activities against protopanaxadiol- and protopanaxatriol-type
ginsenosides for the production of CK and F1. Using gram-scale ginseng extracts as substrates, the immobilized enzyme produced 7.59
g/L CK and 9.42 g/L F1 in 24 h. To the best of our knowledge, these are the highest reported product concentrations of CK and F1, and
this is the first time that a recombinant enzyme has been immobilized on cellulose for the preparation of minor ginsenosides. This safe,
convenient, and efficient production method could also be effectively exploited in the preparation of food-processing recombinant
enzymes in the pharmaceutical, functional food, and cosmetics industries.

Keywords CompoundK . Ginsenoside F1 . Deglycosylation . Biotransformation .Corynebacterium glutamicum

Introduction

Ginseng has been widely used to treat various diseases in East
Asia for more than a thousand years and is increasingly used in
foods and dietary supplements worldwide (Chung et al. 2011;
Shi et al. 2013). Ginsenosides, triterpene saponins that are al-
most exclusively found in ginseng, are considered as the main
active ingredients responsible for various pharmacological ac-
tivities (Kim et al. 2013; Qi et al. 2010; Song et al. 2014). Six
kinds of major ginsenosides (Re, Rg1, Rb1, Rb2, Rc, and Rd)
normally constitute more than 90% of the total ginsenosides in
various parts of ginseng (Shi et al. 2013; Zhou et al. 2014).
Most of the minor ginsenosides, which have fewer sugar moi-
eties attached on aglycon, are absent or are present in smaller
amounts than those of the major ginsenosides (Figure S1) (Shi
et al. 2013; Zhou et al. 2014). Many minor ginsenosides have
higher chemical reactivities than those of abundant major
ginsenosides in raw materials (Smith et al. 2014; Wong et al.
2015). Among these minor ginsenosides, Compound K (CK)
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and F1 show important pharmacological effects, including anti-
inflammatory (Wang et al. 2015), anticancer (Cho et al. 2009;
Hu et al. 2012), neuroprotective (Lee et al. 2013), anti-diabetic
(Gu et al. 2013), and skin-healing effects (Lee et al. 2003; Lee
2018), supporting their potential application in the food and
pharmaceutical industries.

However, CK and F1 are rare minor ginsenosides with low
polarities and are absent or comprise less than 0.005% of raw
ginseng or red ginseng (Park et al. 2013; Shi et al. 2013; Zhou
et al. 2014). Thus, purifying large quantities of pure CK and
F1 from the raw plant is extremely difficult and costly,
resulting in a bottleneck in food applications. Microbial or
enzymatic methods have been explored for CK and F1 prepa-
ration (Cui et al. 2016; Kim et al. 2011; Park et al. 2010).
However, these methods exhibit low selectivity and poor pro-
ductivity. As an alternative to preparing pharmacologically
active CK and F1, recombinant enzymatic conversion
methods have been explored to efficiently and specifically
convert abundant major ginsenosides (Shin and Oh 2016).

Several recombinant glycosidases produce these two minor
ginsenosides in gram-scale quantities from abundant major
ginsenosides (An et al. 2017; Cui et al. 2013). Unfortunately,
Escherichia coli is not a suitable expression host for preparing
food-grade minor ginsenosides because it is not generally rec-
ognized as food- grade (GRAS) bacteria and also has the poten-
tial of generating endotoxins (Liu et al. 2016). Two recent stud-
ies have demonstrated the preparation of minor ginsenosides F2
and Rh2-Mix from major ginsenosides using expression sys-
tems of GRAS host strains (Li et al. 2016a; Siddiqi et al.
2017). Nevertheless, CKor F1 production has not been achieved
using recombinant enzymes from GRAS hosts.

Furthermore, the production efficiencies of ginsenoside CK
and F1 by recombinant enzymes also require improvement.
Enzymemodifications based on protein structure have been con-
ducted to increase productivity, but limited improvements have
been achieved (Shin et al. 2017). This issue can be addressed by
modifying downstream processes, such as increments in the en-
zyme concentration, which could accelerate the reaction to re-
duce the precipitates of intermediates in minor ginsenosides
preparation and reduce the reaction volume or time.

Conventional enzyme concentration methods, e.g., heating
evaporation, freeze-drying, ultrafiltration, and chromato-
graphic and precipitation separation, are limited by their
high-energy consumption, long time processes, and activity
damages (Shire et al. 2004). The adsorption method using a
cellulose-binding module (CBM) to immobilize recombinant
enzymes on cellulose is an emerging technique with many
important advantages, such as low-energy consumption, sim-
ple operation, high affinity of binding, and minimum enzyme
damage (Li et al. 2016b; Oliveira et al. 2015; Yu et al. 2017).
Furthermore, the supporting material (cellulose) is an abun-
dant and safematerial that is broadly applied as a food additive
(Eichhorn et al. 2009; Je et al. 2017). This immobilization

method exhibits a high protein-binding capacity using regen-
erated amorphous cellulose (RAC), which can be simply
made by phosphoric acid treatment (Hong et al. 2008; You
and Zhang 2013).

In this study, a food-grade expression and immobilization
method was developed to meet the demand for the enhanced
production of CK and F1. For this purpose, we selected
MT619 among 10 glycosidase candidates with high activity
for transforming protopanaxadiol (PPD)-type ginsenoside
mixtures (PPDGM) or protopanaxatriol (PPT)-type
ginsenoside mixtures (PPTGM) into CK and F1, respectively.
The enzymatic properties and substrate specificities ofMT619
were investigated. The enzyme was fused with CBM (C3a)
from Clostridium thermocellum and expressed as a recombi-
nant enzyme (C3a-MT619) in Corynebacterium glutamicum
ATCC13032 for immobilization on RAC with a high protein
density. The treatment of PPDGM and PPTGM with the
immobilized enzyme yielded gram-scale CK and F1 with high
efficiency. These findings represent a substantial advance over
the efficient production of minor ginsenosides using recombi-
nant enzymes owing to the lack of studies of ginsenoside-
transforming glycosidases immobilized on cellulose.

Materials and methods

Chemicals and reagents

Standards of various ginsenosides (Rg1, Re, Rb1, Rc, and Rd)
used in the present study were purchased from Hongjiu Co.,
Ltd. (Dalian, China). GypXVII, GypLXXV, Rg3(S), Rh2(S),
F2, Compound K (CK), PPD, Rg2(S), Rh1(S), and PPT were
prepared as described in our previous studies (Cui et al. 2014;
Cui et al. 2017; Cui et al. 2013; Du et al. 2014). The other
chemical reagents used were at minimum of extra pure grade.

Synthesis and cloning of candidate glycosidases

The bacterial strains and vectors employed for the expression
of MT619 and C3a-MT619 are shown in Table S1. As codon
preference differs among taxa, the 10 glucosidase genes were
re-translated into DNA favoring the codon usage of
C. glutamicum ATCC13032 to enhance expression in this
organism and synthesized and cloned into pGEX4T-1 by
Mutagenex Co. (Suwanee, GA, USA). The sequence for the
codon-optimized mt619 gene was deposited into GenBank
under accession number MK575514.

Construction of MT619 and C3a-MT619 expression
vectors

DNA fragments of interest were amplified by polymerase
chain reaction (PCR) with Pfu polymerase (Elpis-Biotech,
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Daejeon, Korea) and purified using gel-extraction kits obtain-
ed from Enzynomics Co. Ltd. (Seoul, Korea). Primers used in
the present study are listed in Table S2. Five fragments were
amplified and gel-purified: pEX backbone (P3 and P4), pH 36
backbone (P8 and P9), c3a (P5 and P6), mt619-1 (P1 and P2),
c3a-mt619 (P10 and P11), and mt619-2 (P2 and P3). These
fragments were joined by Gibson assembly (New England
Biolabs, Ipswich, MA, USA) to form pEX-mt619 (pEX back-
bone and mt619-1), pEX-c3a-mt619 (pEX backbone, c3a, and
mt619-2), and pH36-C3a-MT619 (pH 36 backbone and c3a-
mt619). The resulting plasmids were transformed into
C. glutamicum ATCC13032 by electro-transformation using
the method described previously (Ruan et al. 2015).

Characterization of MT619

The protein concentrations in samples were determined using
the Bradford reagent (Sigma, St. Louis, MO, USA) and the
specific activity was determined using pNP-β-D-
glucopyranoside (PNPGlc) as a substitute substrate at 37 °C.
The reactions were monitored using a microplate reader Bio-
Rad Model 680 (Bio-Rad, Hercules, CA, USA) with kinetic
mode, and the release of p-nitrophenol was measured at
405 nm every 5 s. The effect and stability of pH and temper-
ature, and metals and substrate preference on the enzymatic
activity were determined as described previously (Cui et al.
2017).

Substrate preference of recombinant MT619 was deter-
mined using p-nitrophenyl (PNP) and o-nitrophenyl (ONP)
glycosides as substrates (all from Sigma) at 37 °C. The fol-
lowing substrates were examined: PNP-β-D-glucopyranoside,
PNP-β-D-galactopyranoside, PNP-β-D-fucopyranoside, PNP-
N-acetyl-β-D-glucosaminide, PNP-β-L-arabinopyranoside,
PNP-β-D-mannopyranoside, PNP-β-D-xylopyranoside,
PNP-α-D-glucopyranoside, PNP-α-L-arabinofuranoside,
PNP-α-L-arabinopyranoside, PNP-α-L-rhamnopyranoside,
PNP-α-D-mannopyranoside, PNP-α-D-xylopyranoside,
ONP-β-D-glucopyranoside, ONP-β-D-galactopyranoside,
ONP-β-D-fucopyranoside, and ONP-α-D-galactopyranoside
(all from Sigma).

Biotransformation of the major ginsenosides using
recombinant MT619

Purified MT619 was used to examine its hydrolyzing-
specificity to the sugar moieties attached to PPT-type
ginsenosides (Re and Rg1) and PPD-type ginsenosides (Rb1,
Rd). The purified MT619 was reacted with Re, Rg1, Rb1, or
Rd (2.0 mg/mL, pH 7.0) in a shaking incubator at 37 °C. The
ginsenosides in samples were extracted by butanol and were
identified by thin-layer chromatography (TLC).

RAC preparation

RAC was prepared based on the method described previously
(Hong et al. 2008). Briefly, 10 g of microcrystalline cellulose
(SigmaCell 20) and 30 mL of distilled water were mixed to
form a suspension. Two hundred milliliters of ice-cold 86%
H3PO4 was carefully added to the mixture with stirring. After
the cellulose solution turned transparent, it was placed on ice
for one hour. Then, 800 mL ice-cold water was added with
vigorous stirring by the addition of 200 mL at a time. The
suspension mixture was centrifuged at 4000g and 4 °C for
20 min, and the supernatant was discarded. The cellulose pel-
let was washed four times with cold water to remove phos-
phoric acid. After neutralization using 2 M Na2CO3, the pellet
was washed twice with water. The prepared RAC was stored
at 4 °C as a 4-g RAC/L suspension with 0.2% sodium azide.

Adsorption of C3a-MT619 on RAC

To estimate the binding capacity of C3a-MT619 attached to
the RAC, adsorption isotherm measurements were taken. A
sequence of tubes containing 0.1–10 mL of C3a-MT619 cell
lysate (pH 7.0) with a fixed concentration (0.5 mg/mL) was
prepared. To each tube, 0.4 mg of RAC was added and was
incubated with shaking at 200 rpm for 10 min at 25 °C. The
enzyme-immobilized RAC was centrifuged at 10,000 g for
5 min and the precipitate was washed twice with 1 mL of
phosphate buffer (50 mM, pH 7.0). The obtained cellulose
was assayed for β-glucosidase activity adsorbed on the cellu-
lose. The maximum enzyme adsorption capacity (Amax) of
RAC was calculated by the Langmuir equation, as previously
described (Hong et al. 2007). The Wmax and Kp values were
also calculated by mathematical methods (Bothwell and
Walker 1995). The following equation was applied:

Ea ¼ WmaxKpE f

1þ KpE f

Ea indicates adsorbed C3a-MT619 (mg/g RAC), Wmax in-
dicates the maximum C3a-MT619 adsorption per liter (mg/g
RAC), and Ef indicates free C3a-MT619 (mg/g RAC).

Preparation of recombinant MT619
from C. glutamicum ATCC13032

For fed-batch cultivation and to obtain a high cell density of
recombinant enzymes, defined and semidefined media supple-
mented with kanamycin (30 mg/L) were used to cultivate
C. glutamicum ATCC13032 harboring pH36-C3a-MT619 in
a 10-L stirred-tank reactor (Fermentec Co., Chungju, Korea)
with a 6-L working volume at 400 rpm. As a seed culture,
C. glutamicum ATCC13032 harboring pH36-C3a-MT619
was inoculated into 200 mL of defined medium containing 20
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g/L glucose in a 1-L baffle flask and incubated at 30 °C for 20 h
at 200 rpm. Themedium consisted of 10 g of (NH4)2SO4, 3 g of
K2HPO4, 1 g of KH2PO4, 2 g of urea, 2 g of MgSO4, 200 μg of
biotin, 5mg of thiamine, 10mg of calcium pantothenate, 10mg
of FeSO4, 1 mg of MnSO4, 1 mg of ZnSO4, 200 μg of CuSO4,
and 10 mg of CaCl2 per liter with 25 mg/L kanamycin.

The protein was constitutively expressed by the H36 pro-
moter, as described previously (Yim et al. 2014). After the cell
density reached an OD600 of 100, the cells were harvested by
centrifugation at 4000g for 20 min. The pellets were
suspended in 50 mM sodium phosphate buffer (pH 7.0); then,
the cells were broken by sonication (Branson Digital Sonifier,
Mexico City, Mexico). The cell debris was removed via cen-
trifugation at 4000g for 20 min. The C3a-MT619 in cell lysate
was absorbed by RAC with shaking for 15 min at 25 °C.

Optimization of the substrate concentration

CK and F1 production were evaluated using PPDGM and
PPTGM. To determine the optimal concentration of substrates
for the biotransformation reaction, enzyme-immobilized RAC
was mixed with an equal volume of substrates at concentra-
tions of 10–100 mg/mL at 37 °C. Samples were withdrawn at
regular intervals and analyzed by HPLC.

Scale-up CK and F1 production

The scaled-up transformation was performed in a shaking in-
cubator at 200 rpm and 37 °C. The reaction started with 20
mg/mL and 75 mg/mL substrates (PPDGM or PPTGM) as a
final concentration by addition of immobilized C3a-MT619.
Samples were analyzed by HPLC to determine the product
concentrations of ginsenosides CK and F1.

High-performance liquid chromatography analysis

The HPLC analysis of samples in the present study was per-
formed using an Agilent 1260 Infinity HPLC system (Agilent
Co., Santa Clara, CA, USA). Separation of ginsenosides was
conducted on a YMC ODS C18 column (5 μm, 250 × 4.6
mm; YMC, Kyoto, Japan) with a guard column (Eclipse XDB
C18, 5 μm, 12.5 × 4.6 mm; Agilent Technologies, CA, USA).
The gradient elution system consisted of water (A) and aceto-
nitrile (B) using the following gradient program: 0–8 min,
32% B; 8–12 min, 32–65% B; 12–15 min, 65–100% B; 15–
15.1 min, 100% B; 15.1–25 min, 100–32% B; 25–26 min,
32% B. The detection wavelength was set to 203 nm at a flow
rate of 1.0 mL/min.

TLC analysis

TLC was conducted using 60F254 silica gel plates (Merck,
Darmstadt, Germany) and CHCl3-CH3OH-H2O (65:35:10,

v/v/v) as the developing solution. The results were visualized
by 10% H2SO4 by heating at 110 °C for 5 min.

Results

Cloning of 10 glycosidase candidates for CK and F1
production

To identify highly productive enzymes, 19 uncharacterized
family 3 glycosidases were chosen as candidates based on ami-
no acid similarity by BLAST (blast.ncbi.nlm.nih.gov). In the
phylogenetic tree (Zhang and Sun 2008), nine known enzymes
that can transform the major ginsenosides Rb1 and Rg1 into CK
and F1 or Rg3 and Rh1 formed separate groups (Fig. 1). The
ginsenoside-transforming characteristics of glycosidases are re-
lated to the properties of their amino acid sequences. Among
the candidates, ten glycosidases (Table 1), which grouped with
enzymes producing CK and F1, were selected for heterologous
expression and characterization. The coding sequences of gly-
cosidases were codon-optimized for expression in C.
glutamicum ATCC13032, synthesized, and cloned into a
pGEX4T-1 vector. These synthesized enzymes were expressed
in E. coli and determined by SDS-PAGE (Figure S2). All can-
didates were successfully expressed in E. coli, except OJ521,
and seven showed glucosidase activity against pNP-β-
glucopyranoside (PNPGlu), not including AS637 and BS642
(Table 1). Their ginsenoside-transforming activities were ex-
amined using Rb1, Re, and Rg1 as substrates. Interestingly,
the enzymes with CK and F1 producing abilities were grouped
separately from Rh2 and Rh1 by the sequence-based phyloge-
netic tree. Based on TLC (Figure S3), all clones were able to
hydrolyze Rg1 into F1, except BS642. Ginsenoside Re could be
hydrolyzed by six glycosidases (TS608, IB608, CV626,
CS617, and MS614) to PPT via F1. Six enzymes (TS608,
IB608, CV626, KA611, CS617, and AS637) showed
Rb1→GYP17→GYP75 transforming activity and TS608 and
CS617 produced CK by hydrolyzing the C20 outer glucose of
Gyp75. MS614 and MT619 produced F2 and CK that were
different from other clones. The expression and activities of
all clones are summarized in Table 1. These results also provide
evidence for the amino acid sequence-activity relationships of
ginsenoside-transforming glycosidases. We selected MT619,
which exhibited the highest activity among all candidates, as
a suitable enzyme for the production of CK and F1 from major
ginsenosides.

Expression of C3a-MT619 in C. glutamicum
ATCC13032

For high-density immobilization, a CBM (C3a) from
C. thermocellum (Oliveira et al. 2015), was engineered at
the N terminus of MT619 to construct C3a-MT619 with a
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flexible linker (G4S)2 to connect the two modules. The mt619
and c3a-mt619 genes consist of 1878 and 2376 bps and en-
code 625 and 791 amino acids, withmolecular weights of 68.3
and 86.3 kDa. The genes were amplified by PCR and
subcloned into the pEX4T-1 and pH 36 vectors for heterolo-
gous expression in E. coli BL21 and C. glutamicum
ATCC13032. C3a-MT619 was expressed continuously in
C. glutamicum ATCC13032 by the promoter H36, which is
efficient for heterologous expression (Yim et al. 2014). After
cultivation for 24 h, significant expression bands with the
predicted molecular masses were observed (Fig. 2).
Recombinant C3a-MT619 contains 1.41 ± 0.03% of the total

proteins in the C. glutamicum ATCC13032 lysate, which is
21.5% of the expression level of the enzyme in E. coli BL21.

Characterization of recombinant MT619

MT619 and C3a-MT619 proteins were purified by Ni column
and DEAE column chromatography. The predicted molecular
mass (68.3 and 86.3 kDa) of the native β-glucosidase was
validated by SDS-PAGE (Figure S4). Based on the examina-
tion of activity using PNPGlu, the recombinant C3a-MT619
expressed in C. glutamicum ATCC13032 had an enzyme

Fig. 1 Evolutionary relationships among the characterized and candidate
glycosidases in glycoside hydrolase family 3 (GH3). Amino acid
sequences of these proteins were retrieved from the CAZy and NCBI/
EMBL databases (accession numbers are indicated in Table 1). The

evolution was assumed using the neighbor-joining method in MEGA7
program (Kumar and Stecher 2016). The bar at the bottom represents 20
amino acid substitutions per 100 residues

Table 1 Cloned glycosidases and their characteristics

Name Organism Source pNP-β-
glucopyranoside
activity

Rb1 Re Rg1 GenBank accession no.

TS608 Terracoccus sp. 273MFTsu3.1 Bacteria + G75, CK F1, PPT F1 WP_020141869.1

IB608 Intrasporangiaceae bacterium Bacteria + G17, G75 F1, PPT F1 WP_026862722.1

CV626 Corynebacterium variabile Bacteria + G17, G75 F1, PPT F1 WP_030201081

KA611 Knoellia aerolata Bacteria + G17, G75 − F1 WP_035939434.1

CS617 Cryocola sp. 340MFSha3.1 Bacteria + G75, CK F1, PPT F1 WP_020076619.1

AS637 Arthrobacter sp. SPG23 Bacteria Weak G75 − F1 WP_043484882.1

MS614 Microbacterium sp. TS- Bacteria + F2, CK F1, PPT F1 WP_023951833.1

MT619 Microbacterium testaceum Bacteria + F2, CK F1, PPT F1, PPT WP_013585536.1

BS642 Bacillus subtilis BEST7613 Bacteria − − − − BAM49096.1

OJ521 Oryza sativa Japonica Group Plant − − PPT − AAN01354.1
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activity of 61.9% of the MT619 heterologously expressed in
E. coli.

The optimum pH and temperature were examined using
purified MT619. The effect of pH on enzymatic activity was
determined using 2.0 mM PNPGlc as a substrate. The pH sta-
bility of recombinant C3a-MT619 was determined by measur-
ing enzymatic activity after incubation in each buffer at 4 °C for
12 h. MT619 was relatively stable from pH 6.0 to 8.0 and had
optimal activity at pH 7.0; from pH 9.0, the enzyme activity
decreased rapidly and at pH 5.0, the enzyme activity reduced to
54.0% (Fig. 3a). The effect of temperature on enzymatic activ-
ity was tested by incubating the enzyme with an optimal pH
buffer containing 2.0 mM pNPGlc for 5 min. The optimal tem-
perature for enzyme activity was 45 °C; at 30 °C and 37 °C, the
enzyme had a relative activity of 70.3% and 88.6%, respective-
ly. Recombinant MT619 was relatively stable at temperatures
lower than 30 °C. 76.3% and 54.9% of enzyme activity were
retained after incubation for 2 h at 37 °C and 45 °C, respective-
ly, and no activity was detected above 55 °C (Fig. 3b). Though
MT619 has the highest activity at 45 °C, the ginsenoside-
transforming reaction was conducted at 37 °C to extend the
stable transformation activity.

The effects of chemical reagents and metal ions on MT619
activity were determined using a concentration of 10mM. The
enzyme activity was not affected byβ-mercaptoethanol, Ca2+,
Na+, K+, and Mg2+; however, activity was lost in the presence
of Cu2+, Hg2+, and Zn2+. EDTA did not affect its activity,
indicating that divalent cations are not necessary for the en-
zyme activity. MT619 was significantly inhibited by Co2+ and
Mn2+. No significant positive effects on the activity of the
MT619 were found for the tested ions and agents (Table S3).

The glycoside specificity of MT619 was examined using
PNP and ONP glycosides. MT619 was only active against the
glucose moiety of PNP-β-D-glucopyranoside and ONP-β-D-
glucopyranoside. It showed maximum activity towards
PNP-β-D-glucopyranoside and 28.7% relative activity to-
wards ONP-β-D-glucopyranoside.

Ginsenoside-transformation activity of MT619

MT619 could clearly transform four major ginsenosides (Re,
Rg1, Rb1, and Rd), as evidenced by the Rf values in a TLC
analysis (Fig. 4). The proposed biotransformation pathways
by MT619 for the PPD ginsenosides are Rb1→
GypXVII(G17)→GypLXXV(G75) & F2→CK→PPD; Rd→
F2→CK→PPD; Re→F1→PPT; Rg1→F1→PPT (Fig. 5). This
enzyme has less hydrolytic activity against the glucose at the
C20 position, which may result in the production of CK and
F1 from the abundant higher polarity ginsenosides. The
transforming pathways are similar to the reported
ginsenoside-transforming glucosidases (An et al. 2010; Shin
et al. 2017). However, MT619 showed the highest F1 produc-
tion activity, which was 7.4 times higher than that of BgpA,
used for the gram-scale production of this rare minor
ginsenoside (An et al. 2017). Interestingly, we also found an
unexpected band (MT1) whose Rf value was higher than
those that of Rg1 and Rg2 (Fig. 4). This may represent the
trans-glycosylated products of Re, produced by MT619,
whose molecular weight is 784.7, as determined by MS/MS
detection in positive electrospray ionization mode. The mo-
lecular structure of MT1 and the transglycosylation activity of
MT619 would be analyzed in future studies.

Adsorption of C3a-MT619 on RAC

CBMs are often fused to the partner proteins to assist their
production and purification (Oliveira et al. 2015). The
expressed C3a-MT619 was adsorbed on the surface of RAC,
which has a much larger external surface area than that of
microcrystalline cellulose (Hong et al. 2008). The crude cell
lysates of C3a-MT619 were obtained by sonication of the cell
pellets and mixed with RAC; thus, C3a-MT619 was adsorbed
on the surface of cellulosic material as revealed by SDS-
PAGE analysis (Fig. 2). The adsorption curves of the
immobilized C3a-MT619 enzyme detected by glucosidase

Fig. 2 SDS-PAGE analysis of the C. glutamicum ATCC13032 cell
extracts containing the recombinant proteins and RAC pull-down pro-
teins. Lane M, protein marker; Lanes S, soluble cell extract containing
C3a-MT619; Lanes P, precipitant of the cell extract, respectively; Lane
RAC-S, the supernatant after immobilization; Lane RAC, RAC adsorbed
C3a-MT619
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activity obeyed the Langmuir isotherms, suggesting single
layer adsorption (Fig. 6). The maximum adsorption capacity
of the fusion enzyme was 984 mg/g RAC, and the maximum
enzyme concentration on RAC is approximately 78.7 mg/mL
RAC (condensed by centrifugation at 10,000g for 5 min),
which is 286 times greater than the cell lysate concentration.

Scale-up absorption was conducted using 5000 mL of cell
lysate and 50 mL of RAC. 66.0% of C3a-MT619 in the cell
lysate was immobilized on RAC by shaking for 10 min,
resulting in a 61.8-fold increase in concentration compared
with the cell lysate. The immobilized concentration of C3a-

MT619 on RAC was 217 mg/g RAC (17.3 mg/mL RAC,
condensed by centrifugation at 10,000g, 5 min), and SDS-
PAGE showed that some unspeci f ic prote ins in
C. glutamicum ATCC13032 were co-immobilized on cellu-
lose (Fig. 2); these were consistent with previous results (Li
et al. 2016b). The immobilized C3a-MT619 retained over
78.0% of its activity after successive washing with 10 vol-
umes of buffer repeated 10 times. Although the immobiliza-
tion of C3a-MT619 was quite stably attached to RAC in this
experiment, the re-usability of the immobilized enzymes is
limited by the co-precipitation of the generated CK and F1.

Fig. 3 Effects of pH (a) and
temperature (b) on the β-
glucosidase activity and enzyme
stability of MT619

Fig. 4 Biotransformation of Rb1,
Rd, Re, and Rg1 by purified
MT619 (0.1 mg/mL) analyzed by
TLC. S1, S2, S3, and S4,
ginsenoside standards; C1,
substrate Re; 1 and 2,
biotransformation of Re by
purified MT619 for 2 h and 4 h,
the suspected trans-glycosylated
product-MT1 is indicated with an
arrow; C2, substrate Rg1; 3 and 4,
biotransformation of Rg1 by
MT619 for 2 h and 4 h; C3, sub-
strate Rb1; 5, 6, 7, 8, and 9, bio-
transformation of Rb1 by MT619
for 0.01 h, 1 h, 2 h, 6 h, 12 h, and
24 h; C4, substrate Rd; 10, 11, 12,
13, and 14, biotransformation of
Rd by MT619 for 1 h, 2 h, 6 h, 12
h, and 24 h. MT1, the suspected
transglycosylated product, is in-
dicated by a blue arrow in 2

Appl Microbiol Biotechnol (2019) 103:7003–7015 7009



Optimization of substrate concentration
for production of CK and F1

The enzyme reactions were performed using immobilized
C3a-MT619 (217 mg/g RAC), and PPTGM and PPDGM
were used as substrates owing to their relative abundance in
crude ginseng extracts (Wan et al. 2008; Zhao et al. 2007).
Various substrate concentrations of PPTGM and PPDGM
(10–100 mg/mL) were examined to determine the appropriate
reaction conditions for reduced reactor volumes and costs
(Fig. 7a, b). The immobilized enzyme transformed 20 mg/
mL PPDGM into CK with 8.25 mg/mL product concentration

(Fig. 7a). PPDGM (10 mg/mL) reached its peak concentration
after 18 h and decreased when CK (the final product) was
transformed into PPD by C3a-MT619. Higher concentrations
of PPDGM (> 20 mg/mL) reduced productivity. Though a
substrate concentration of 50 mg/mL resulted in similar CK
concentrations, we choose 20 mg/mL for the scaling-up the
productivity. The concentration of F1 was increased in propor-
tion to the substrate concentration, and the maximum product
concentration of F1 was 9.14 mg/mL using 100 mg/mL
PPTGM for 24 h (Fig. 7b). Owing to the advantages of using
small quantities of enzymes and complete conversion of sub-
strates, the PPDGM and PPTGM concentrations of 20 mg/mL

Fig. 5 Transforming pathways of ginsenosides Rb1, Rd, Re, and Rg1 and their metabolites hydrolyzed by recombinant MT619
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and 75 mg/mL, respectively, were adopted for the scaled-up
production of CK and F1.

Mass production of CK and F1 using immobilized
C3a-MT619

Commercially available PPDGM and PPTGM were used as
substrates for the mass production of CK and F1 by the

immobilized enzymes with an enzyme-substrate volume ratio
of 1:5 for 24 h (Fig. 7c, d). PPTGM (40 mL; 75 mg/mL) was
used to produce ginsenoside F1 by the conversion of the
immobilized C3a-MT619. A total of 54.3% of Rg1 and Re
was transformed in 24 h with 9.42 g/L F1 product. The reac-
tion for CK production consisted of 30 mL of C3a-MT619
immobilized RAC and 3 g of PPDGM (substrate, 20 mg/mL)
in 150 mL of 50 mM sodium phosphate buffer. As shown in
Fig. 7c, Rb1 and Rd in PPDGMwere completely converted by
the immobilized C3a-MT619 in 6 h. CK was produced at a
concentration of 7.86 g/L in 24 h, with a 79.2% molar yield.
Samples for CK and F1 production drawn and analyzed by
HPLC are shown in Fig. 8. The produced CK and F1 were
isolated from the reaction mixture using macroporous resins.
Finally, 1.38 g and 1.59 g of CK and F1 products with 51.6%
and 25.2% chromatographic purity were produced.

Discussion

Recent studies have focused on the many pharmacological
effects of ginsenoside CK and F1 owing to their potential food,
cosmetics, and pharmaceutical applications. F1 is a potential
drug for pigmentary disorders, atherosclerosis, and aging-

Fig. 7 Effect of the substrate concentration on the production of CK (a) and F1 (b) using immobilized C3a-MT619, and scale-up productions (CK (c); F1 (d))

Fig. 6 Various amounts of C3a-MT619 protein adsorption on a fixed amount
of RACat 25 °C. TheLangmuir equationwas used to calculate theAmax value
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related diseases (Hou et al. 2018; Lee et al. 2018; Qin et al.
2017). CK showed anticarcinogenic effects (Yang et al. 2015),
outstanding skin anti-aging, anti-diabetes, and anti-arthritis
effects (Chen et al. 2015; Lee et al. 2018; Wei et al. 2015).
A human trial confirmed that CK is safe and well tolerated
over the treatment period (Chen et al. 2017a), and pre-clinical
experiments and early clinical trials have also been performed
(Chen et al. 2017b; Zhou et al. 2018). However, the contents
of minor ginsenosides in ginseng functional food products are
low (less than 5.0%) (Ha et al. 2013; Sun et al. 2009).

Highly efficient and specific enzymatic transformation
may be a promising method for minor ginsenoside prepara-
tion, especially using recombinant enzymes. In the last de-
cade, the CK productivity from ginseng extracts increased to
4.2 mg/mL, which was accomplished using two recombinant
glycosidases by Shin et al (Shin et al. 2016a). Similarly, F1
productivity increased to 6.7 mg/mL using a recombinant β-
glucosidase from Terrabacter ginsenosidimutans Gsoil3082T

by our research group (An et al. 2017). However, both these
studies used E. coli as host for enzyme preparation.

There is limited use of recombinant proteins from E. coli as
food additives because E. coli is a non-GRAS species
(Burdock and Carabin 2004). The use of C. glutamicum
ATCC13032 has been suggested for application in production
of food-grade material as it is an endotoxin-free GRAS strain,
with many biotechnological advantages—easy gene manipu-
lation, and growth rate, requirement of inexpensive media,
and many industrial-grade food applications (Lv et al. 2012;
Shin et al. 2016b; Yim et al. 2014). Hyaluronic acid and re-
combinant isomerase have been produced by recombinant

C. glutamicum for applications in the food industry (Cheng
et al. 2016; Shin et al. 2016b). However, the low expression
levels of recombinant proteins in GRAS strains reduce their
efficiency in the production processes.

One-step purification, concentration, and immobilization
of enzymes using low-cost cellulosic materials would greatly
facilitate enzyme preparation and decrease protein purification
costs. Furthermore, cellulose has been used in various kinds of
foods, such as traditional desserts, low cholesterol diets, veg-
etarian meats, and as additives, owing to their natural abun-
dance, lack of toxicity, low cost, and intriguing mechanical
properties (Eichhorn et al. 2009; Habibi et al. 2010; Je et al.
2017; Moon et al. 2011; Nishino et al. 2004;Wang et al. 2016;
Youssef et al. 2016). This convenient and efficient immobili-
zation method could also be usefully exploited in the prepa-
ration of food-processing recombinant enzymes in the func-
tional food and cosmetic industries.

In conclusion, we describe the isolation of a ginsenoside-
hydrolyzing β-glucosidase (MT619), its heterologous expres-
sion in C. glutamicumATCC13032, concentration and immo-
bilization on RAC by protein–cellulose interactions, and the
efficient production of CK and F1. Compared with traditional
CK and F1 preparation methods using the E. coli host system,
the expression level is decreased, but this method of immobi-
lization and production offers a number of advantages. (1) A
GRAS strain was used for enzyme preparation, which is ef-
fective for food processing. (2) The immobilization, purifica-
tion, and concentration of the enzyme is a simple, one-step
process with high capacity for supporting materials. (3) The
supporting material, cellulose, is an environmentally friendly,

Fig. 8 HPLC analysis of the transformation of ginsenosides using
immobilized C3a-MT619. a Ginsenoside standards (G17, G75, Rh2,
PPD). b Ginsenoside standards (Rb1, Rd, F2, CK). c PPDGM. d CK
produced after 6 h of reaction of immobilized C3a-MT619 with

PPDGM. e CK produced after 24 h of reaction. f Ginsenoside standards
(Rg2, Rh1, PPT). gGinsenoside standards (Re, Rg1, F1, PPT). h PPTGM.
i F1 produced after 6 h of reaction of immobilized C3a-MT619 with
PPTGM. j F1 produced after 24 h
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sustainable biomaterial and is widely used as a food additive.
(4) The high density and purity of the immobilized enzymes
increased productivity substantially. Thus, our findings dem-
onstrate that the concentrated and immobilized β-glucosidase
that was heterologously expressed in C. glutamicum can be
used to efficiently produce CK and F1 from crude material
from ginseng extracts. We believe that this method will pro-
vide an alternative approach for the food-grade production of
CK and F1, as core functional biomaterials in the health food
industries.
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