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Abstract. Let Fq be the finite field with q = pm elements, where p is an odd
prime and m is a positive integer. For a positive integer t, let D ⊂ Ftq and let

Trm be the trace function from Fq onto Fp. We define a p-ary linear code CD
by

CD = {c(a1, a2, . . . , at) : a1, a2, . . . , at ∈ Fpm},
where

c(a1, a2, . . . , at) =
(
Trm(a1x1 + a2x2 + · · ·+ atxt)

)
(x1,x2,...,xt)∈D

.

In this paper, we will present the weight enumerators of the linear codes CD in

the following two cases:
1. D = {(x1, x2, . . . , xt) ∈ Ftq \{(0, 0, . . . , 0)} : Trm(x21 +x22 + · · ·+x2t ) = 0};
2. D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(x21 + x22 + · · ·+ x2t ) = 1}.

It is shown that CD is a two-weight code if tm is even and three-weight code
if tm is odd in both cases. The weight enumerators of CD in the first case

generalize the results in [17] and [18]. The complete weight enumerators of CD
are also investigated.

1. Introduction

Let Fp be the finite field with p elements and let n be a positive integer, where
p is an odd prime. An [n, k, d] linear code C over Fp is a k-dimensional subspace of
Fnp with minimum distance d.
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Let Ai be the number of codewords with the Hamming weight i in the code C of
length n. The weight enumerator of C is defined by

1 +A1x+A2x
2 + · · ·+Anx

n.

The sequence (1, A1, A2, . . . , An) is called the weight distribution of the code C. We
call C an e-weight code if |{1 ≤ i ≤ n : Ai 6= 0}| = e.

Suppose that the elements of Fp are 0, 1, . . . , p− 1. The composition of a vector
v = (v0, v1, . . . , vn−1) ∈ Fnp is defined to be comp(v) = (t0, t1, . . . , tp−1), where each
ti = ti(v) is the number of components vj(0 ≤ j ≤ n− 1) of v that are equal to i.
Clearly, we have

p−1∑
i=0

ti = n.

Definition 1.1. [23, 24]. Let C be a code over Fp and let A(t0, t1, . . . , tp−1) be the
number of codewords c ∈ C with comp(c) = (t0, t1, . . . , tp−1). Then the complete
weight enumerator of C is the polynomial

WC(z0, z1, . . . , zp−1) =
∑
c∈C

z
t0(c)
0 z

t1(c)
1 · · · ztp−1(c)

p−1

=
∑

(t0,t1,...,tp−1)∈Bn

A(t0, t1, . . . , tp−1)zt00 z
t1
1 · · · z

tp−1

p−1 ,

where Bn = {(t0, t1, . . . , tp−1) : 0 ≤ ti ≤ n,
p−1∑
i=0

ti = n}.

Cyclic codes are a special class of linear codes and their weight enumerators have
been extensively investigated [10, 14, 19, 22, 26, 27, 28, 32]. In addition, some two-
weight and three-weight cyclic codes were presented. The weight enumerators of the
linear codes with a few weights were also given [6, 7, 11, 12, 16, 17, 25, 33] by using
exponential sums in some cases. There are two survey articles on two weight codes
[4] and three-weight cyclic codes [9]. In addition, linear codes with a few nonzero
weights are of special interest in association schemes [3], strongly regular graphs
[4], and secret sharing schemes [5, 31]. The complete weight enumerators of cyclic
codes or linear codes over finite fields were studied in [1, 15, 21, 29, 30], which can
be applied to compute the deception probabilities of certain authentication codes
constructed from linear codes [8, 13].

We begin to recall a class of two-weight and three-weight linear codes which was
proposed by K. Ding and C. Ding [17]. Let q = pm for a positive integer m and let
Trm denote the trace function from Fq onto Fp. Let D = {x ∈ F∗q : Trm(x2) = 0}.
Then a linear code of length n = |D| over Fp can be defined by

CD = {c(a) =
(
Trm(ax)

)
x∈D : a ∈ Fq}.

It was proved that CD is a two-weight code if m is even and a three-weight code if
m is odd.

Motivated by the results given in [17], for D ⊂ Ftq, we define a p-ary linear code
CD by

(1) CD = {c(a1, a2, . . . , at) : a1, a2, . . . , at ∈ Fpm},

where

(2) c(a1, a2, . . . , at) =
(
Trm(a1x1 + a2x2 + · · ·+ atxt)

)
(x1,x2,...,xt)∈D

.
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In this paper, we shall present the weight enumerators of the linear codes CD in the
following two cases:

1. D = {(x1, x2, . . . , xt) ∈ Ftq \ {(0, 0, . . . , 0)} : Trm(x21 + x22 + · · ·+ x2t ) = 0};
2. D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(x21 + x22 + · · ·+ x2t ) = 1}.

In both cases we show that CD is a two-weight code if tm is even and a three-weight
code if tm is odd. It should be remarked that the weight enumerators of CD were
presented when t = 1 [17] and t = 2 [18]. Thus the weight enumerators of CD in the
first case generalize these results. If D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(x21 +x22 + · · ·+
x2t ) = c} for c ∈ F∗p, we point out that the weight enumerators of CD can be similarly

presented because D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(c−1x21 + c−1x22 + · · ·+ c−1x2t ) =
1}. Moreover, the complete weight enumerators of CD are also investigated.

The rest of this paper is organized as follows. In Section 2, we present some
preliminaries which are very useful to get our results. In Section 3, we present
the weight enumerators of the linear codes CD in the first case. In Section 4, we
determine the weight enumerators of the linear codes CD in the second case. In
Section 5, we investigate the complete weight enumerators of the linear codes CD
in both cases. In Section 6, we conclude this paper.

2. Preliminaries

Suppose that q = pm for an odd prime p and a positive integer m. For a ∈ Fq,
an additive character of the finite field Fq can be defined as follows:

ψa : Fq → C∗, ψa(x) = ζTrm(ax)
p ,

where ζp = e
2π
√
−1
p is a primitive p-th root of unity and Trm denotes the trace

function from Fq onto Fp. It is clear that ψ0(x) = 1 for all x ∈ Fq. Then ψ0 is
called the trivial additive character of Fq. If a = 1, we call ψ := ψ1 the canonical
additive character of Fq. It is easy to see that ψa(x) = ψ(ax) for all a, x ∈ Fq. The
orthogonal property of additive characters which can be found in [20] is given by∑

x∈Fq

ψa(x) =

{
q, if a = 0;
0, if a ∈ F∗q .

Let λ : F∗q → C∗ be a multiplicative character of F∗q . Now we define the Gauss
sum over Fq by

G(λ) =
∑
x∈F∗q

λ(x)ψ(x).

If λ is the trivial character λ0 which is defined by λ0(x) = 1 for all x ∈ F∗q , then it
is clear that G(λ0) = −1. In general, the explicit determination of Gauss sums is a
difficult problem. However, they can be explicitly evaluated in a few cases [2, 20].
For future use, we state the quadratic Gauss sums in the following lemma.

Lemma 2.1. [2, 20] Suppose that q = pm and η is the quadratic multiplicative
character of F∗q , where p is an odd prime and m ≥ 1. Then

G(η) = (−1)m−1
√

(p∗)m =

{
(−1)m−1

√
q, if p ≡ 1 (mod 4),

(−1)m−1(
√
−1)m

√
q, if p ≡ 3 (mod 4),

where p∗ =
(−1
p

)
p = (−1)

p−1
2 p.

The following exponential sums will be employed later.
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Lemma 2.2. [20] If q is odd and f(x) = a2x
2 + a1x+ a0 ∈ Fq[x] with a2 6= 0, then∑

x∈Fq

ζTrm(f(x))
p = ζ

Trm(a0−a21(4a2)
−1)

p η(a2)G(η),

where η is the quadratic character of F∗q .

3. Weight enumerators in the first case

In this section, we present the weight enumerators of the linear codes CD defined
by (1) and (2), where D = {(x1, x2, . . . , xt) ∈ Ftq \ {(0, 0, . . . , 0)} : Trm(x21 + x22 +

· · ·+ x2t ) = 0}.
Let ηp be the quadratic character of F∗p and let G(ηp) denote the quadratic

Gauss sum over Fp. For z ∈ F∗p, it is easy to check that η(z) = ηp(z) if m is odd
and η(z) = 1 if m is even (also see [17]), where η is the quadratic character of F∗q .

We have the following lemma which is important to get our results.

Lemma 3.1. Denote nc = |{x1, x2, . . . , xt ∈ Fq : Trm(x21 + x22 + · · ·+ x2t ) = c}| for
each c ∈ Fp. Then

nc =


ptm−1 if c = 0 and tm is odd,
ptm−1 + 1

pηp(−c)G(η)tG(ηp) if c 6= 0 and tm is odd,

ptm−1 + p−1
p G(η)t if c = 0 and tm is even,

ptm−1 − 1
pG(η)t if c 6= 0 and tm is even.

Proof. By the orthogonal property of additive characters, we have

nc =
∑

x1,x2,··· ,xt∈Fq

1

p

∑
y∈Fp

ζ
y
(
Trm(x2

1+x
2
2+···+x

2
t )−c

)
p

=
qt

p
+

1

p

∑
y∈F∗p

ζ−ycp

∑
x1∈Fq

ζ
Trm(yx2

1)
p · · ·

∑
xt∈Fq

ζ
Trm(yx2

t )
p

=
qt

p
+

1

p

∑
y∈F∗p

ζ−ycp G(η)tηt(y). (by Lemma 2.2)

If tm is odd, then

nc =
qt

p
+

1

p
G(η)t

∑
y∈F∗p

ζ−ycp ηp(y)

=

{
ptm−1, if c = 0,
ptm−1 + 1

pηp(−c)G(η)tG(ηp), if c 6= 0.

If tm is even, then

nc =
qt

p
+

1

p
G(η)t

∑
y∈F∗p

ζ−ycp =

{
ptm−1 + p−1

p G(η)t, if c = 0,

ptm−1 − 1
pG(η)t, if c 6= 0.

This completes the proof.

We are ready to determine the length n = |D| of the code CD. By Lemma 3.1
we have

n =

{
ptm−1 − 1, if tm is odd;

ptm−1 + p−1
p G(η)t − 1, if tm is even.
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For a codeword c(a1, . . . , at) of CD, let N := N(a1, . . . , at) denote the number of
components Trm(a1x1 + · · ·+ a2x2) of c(a1, . . . , at) which are equal to 0, i.e.,

N + 1 =
∑

x1,...,xt∈Fq

(
1

p

∑
y∈Fp

ζ
yTrm(x2

1+···+x
2
t )

p

)(
1

p

∑
z∈Fp

ζzTrm(a1x1+···+atxt)
p

)

=
1

p2

∑
x1,...,xt∈Fq

(
1 +

∑
y∈F∗p

ζ
yTrm(x2

1+···+x
2
t )

p

)(
1 +

∑
z∈F∗p

ζzTrm(a1x1+···+atxt)
p

)

= ptm−2 +
1

p2
(
Ω1 + Ω2 + Ω3

)
,(3)

where

Ω1 =
∑
y∈F∗p

( ∑
x1∈Fq

ζ
Trm(yx2

1)
p

)
· · ·
( ∑
xt∈Fq

ζ
Trm(yx2

t )
p

)
,

Ω2 =
∑
z∈F∗p

∑
x1∈Fq

ζTrm(za1x1)
p · · ·

∑
xt∈Fq

ζTrm(zatxt)
p

=

{
(p− 1)qt, if (a1, . . . , at) = (0, . . . , 0),
0, otherwise,

and

Ω3 =
∑
y,z∈F∗p

∑
x1∈Fq

ζ
Trm(yx2

1+za1x1)
p · · ·

∑
xt∈Fq

ζ
Trm(yx2

t+zatxt)
p .

Now we are going to compute the values of Ω1 and Ω3. By the proof of Lemma
3.1, it is easy to see that

Ω1 =

{
0, if tm is odd;
(p− 1)G(η)t, if tm is even.

Moreover, by Lemma 2.2 we have

Ω3 =
∑
y,z∈F∗p

(
ζ
Trm

(
− a

2
1z

2

4y

)
p η(y)G(η)

)
· · ·
(
ζ
Trm

(
− a

2
t z

2

4y

)
p η(y)G(η)

)

= G(η)t
∑
y,z∈F∗p

ηt(y)ζ
−Trm(a21+···+a2t )

4y z2

p .

Now we consider the case that tm is odd. If Trm(a21 + · · ·+a2t ) = 0, then we have

Ω3 = G(η)t
∑
y∈F∗p

ηp(y) = 0.
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If Trm(a21 + · · ·+ a2t ) 6= 0, then it follows from Lemma 2.2 that

Ω3 = G(η)t
∑
y,z∈F∗p

ηp(y)ζ
−Trm(a21+···+a2t )

4y z2

p

= G(η)t
∑
y∈F∗p

ηp(y)
∑
z∈F∗p

ζ
−Trm(a21+···+a2t )

4y z2

p

= G(η)t
∑
y∈F∗p

ηp(y)

(
ηp
(
− 1

4y

)
ηp
(
Trm(a21 + · · ·+ a2t )

)
G(ηp)− 1

)
= (p− 1)G(η)tG(ηp)ηp

(
− Trm(a21 + · · ·+ a2t )

)
.

Suppose that tm is even. Note that ηt(y) = 1 for all y ∈ F∗p. Then we have

Ω3 = G(η)t
∑
y,z∈F∗p

ζ
−Trm(a21+···+a2t )

4y z2

p

= G(η)t
∑
z∈F∗p

∑
y∈F∗p

ζ
z2Trm(a21+···+a

2
t )y

p

=

{
(p− 1)2G(η)t, if Trm(a21 + · · ·+ a2t ) = 0;
−(p− 1)G(η)t, if Trm(a21 + · · ·+ a2t ) 6= 0.

Theorem 3.2. Let CD be a linear code defined by (1) and (2), where D = {(x1, x2,
. . . , xt) ∈ Ftq \ {(0, 0, . . . , 0)} : Trm(x21 + x22 + · · ·+ x2t ) = 0}.

1. If tm > 1 is odd, then CD is a [ptm−1 − 1, tm] three-weight linear code and its
weight enumerator is given by Table 1.

2. If tm is even, then CD is a [ptm−1 + (−1)(
m(p−1)

4 +1)t(p − 1)p
tm−2

2 − 1, tm]
two-weight linear code and its weight enumerator is given by Table 2.

Table 1. Weight enumerators of Theorem 3.2 for odd tm
Weight Frequency

0 1
(p− 1)ptm−2 ptm−1 − 1

(p− 1)(ptm−2 − p tm−3
2 ) p−1

2 (ptm−1 + p
tm−1

2 )

(p− 1)(ptm−2 + p
tm−3

2 ) p−1
2 (ptm−1 − p tm−1

2 )

Table 2. Weight enumerators of Theorem 3.2 for even tm
Weight Frequency

0 1

(p− 1)ptm−2 ptm−1 + (−1)(
m(p−1)

4 +1)t(p− 1)p
tm−2

2 − 1

(p− 1)
(
ptm−2 + (−1)(

m(p−1)
4 +1)tp

tm−2
2

)
(p− 1)

(
ptm−1 − (−1)(

m(p−1)
4 +1)tp

tm−2
2

)
Proof. (1) If (a1, . . . , at) = (0, . . . , 0), then by (3) we have

N = ptm−1 − 1.

If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = 0, then by (3) we have

N = ptm−2 − 1.

It follows from Lemma 3.1 that the frequency of this value is equal to the length
n = ptm−1 − 1 of the code CD.
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If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = c 6= 0, then by (3) we have

N = ptm−2 +
1

p2
(p− 1)G(η)tG(ηp)ηp(−c)− 1.

It follows from Lemma 3.1 that the frequency of this value is equal to ptm−1 +
1
pG(η)tG(ηp)ηp(−c).

By Lemma 2.1, it is easily checked that G(η)tG(ηp) = (−1)
(p−1)(tm+1)

4 p
tm+1

2 if tm
is odd. Note that the Hamming weight of c(a1, . . . , at) defined as (2) is equal to

WH(c(a1, . . . , at)) = n−N(a1, . . . , at).

It is easy to see that WH(c(a1, . . . , at)) = 0 if and only if a1 = · · · = at = 0, so the
dimension of CD is tm. Then we can immediately obtain the desired results.

(2) By Lemma 2.1, we have G(η)t = (−1)(
m(p−1)

4 +1)tp
tm
2 if tm is even. The proof

of Part 2 is very similar to that of Part 1 and we omit the details.

Example 1. (1) Let p = 3, m = 2, and t = 3. Then q = 9 and n = 260. By
Theorem 3.2, the code CD is a [260, 6, 162] linear code and its weight enumerator is

1 + 260x162 + 468x180,

which is consistent with numerical computation by Magma.
(2) Let p = 3, m = 3, and t = 3. Then q = 27 and n = 6560. By Theorem 3.2,

the code CD is a [6560, 9, 4320] linear code and its weight enumerator is

1 + 6642x4320 + 6560x4374 + 6480x4428,

which is consistent with numerical computation by Magma.

It should be remarked that the weight enumerators of CD were presented when
t = 1 [17] and t = 2 [18]. Thus Theorem 3.2 generalizes these results. In Tables 1
and 2, we observe that the weights of CD have a common divisor p− 1. Let D be a
subset of D such that

D = F∗pD = {y(x1, . . . , xt) = (yx1, . . . , yxt) : y ∈ F∗p, (x1, . . . , xt) ∈ D}.

Then the weight enumerators of linear codes CD can be obtained from Theorem 3.2
and more two-weight and three-weight linear codes can be presented.

In fact, if D = {(x1, x2, . . . , xt) ∈ Ftq \ {(0, 0, . . . , 0)} : Trm(β1x
2
1 + β2x

2
2 + · · · +

βtx
2
t ) = 0}, where β1, β2, . . . , βt ∈ F∗q , the weight enumerators can be similarly

determined and the details are omitted here.

4. Weight enumerators in the second case

In this section, we present the weight enumerators of the linear codes CD defined
by (1) and (2), where D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(x21 + x22 + · · ·+ x2t ) = 1}.

To this end, we begin to determine the length n of the code CD. Note that

ηp(−1) = (−1)
p−1
2 . Then by Lemma 3.1 we have

n = |D| =

{
ptm−1 + 1

p (−1)
p−1
2 G(η)tG(ηp), if tm is odd,

ptm−1 − 1
pG(η)t, if tm is even.
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For a codeword c(a1, . . . , at) of CD, let N denote the number of components
Trm(a1x1 + · · ·+ a2x2) of c(a1, . . . , at) which are equal to 0, i.e.,

N =
∑

x1,...,xt∈Fq

(
1

p

∑
y∈Fp

ζ
y
(
Trm(x2

1+···+x
2
t )−1

)
p

)(
1

p

∑
z∈Fp

ζzTrm(a1x1+···+atxt)
p

)

=
1

p2

∑
x1,...,xt∈Fq

(
1 +

∑
y∈F∗p

ζ
yTrm(x2

1+···+x
2
t )−y

p

)(
1 +

∑
z∈F∗p

ζzTrm(a1x1+···+atxt)
p

)

= ptm−2 +
1

p2
(
Ω1 + Ω2 + Ω3

)
,(4)

where

Ω1 =
∑
y∈F∗p

ζ−yp

( ∑
x1∈Fq

ζ
Trm(yx2

1)
p

)
· · ·
( ∑
xt∈Fq

ζ
Trm(yx2

t )
p

)
,

Ω2 =
∑
z∈F∗p

∑
x1∈Fq

ζTrm(za1x1)
p · · ·

∑
xt∈Fq

ζTrm(zatxt)
p

=

{
(p− 1)qt, if (a1, . . . , at) = (0, . . . , 0),
0, otherwise,

and

Ω3 =
∑
y,z∈F∗p

ζ−yp
∑
x1∈Fq

ζ
Trm(yx2

1+za1x1)
p · · ·

∑
xt∈Fq

ζ
Trm(yx2

t+zatxt)
p .

By the proof of Lemma 3.1, it is easy to check that

Ω1 =

{
(−1)

p−1
2 G(η)tG(ηp), if tm is odd;

−G(η)t, if tm is even.

Moreover, by Lemma 2.2 we have

Ω3 =
∑
y,z∈F∗p

ζ−yp

(
ζ
Trm

(
− a

2
1z

2

4y

)
p η(y)G(η)

)
· · ·
(
ζ
Trm

(
− a

2
t z

2

4y

)
p η(y)G(η)

)

= G(η)t
∑
y,z∈F∗p

ζ−yp ηt(y)ζ
−Trm(a21+···+a2t )

4y z2

p .

Now we consider the case that tm is odd. If Trm(a21 + · · ·+a2t ) = 0, then we have

Ω3 = G(η)t
∑
y,z∈F∗p

ζ−yp ηp(y) = (−1)
p−1
2 (p− 1)G(η)tG(ηp).

If Trm(a21 + · · ·+ a2t ) 6= 0, then it follows from Lemma 2.2 that

Ω3 = G(η)t
∑
y∈F∗p

ζ−yp ηp(y)

(
ηp
(
− 1

4y

)
ηp
(
Trm(a21 + · · ·+ a2t )

)
G(ηp)− 1

)
= G(η)tG(ηp)ηp

(
− Trm(a21 + · · ·+ a2t )

) ∑
y∈F∗p

ζ−yp −G(η)t
∑
y∈F∗p

ζ−yp ηp(y)

= −G(η)tG(ηp)ηp
(
− Trm(a21 + · · ·+ a2t )

)
− (−1)

p−1
2 G(η)tG(ηp)

= −(−1)
p−1
2 G(η)tG(ηp)

(
ηp
(
Trm(a21 + · · ·+ a2t )

)
+ 1

)
.

Advances in Mathematics of Communications Volume 13, No. 1 (2019), 195–211



Linear codes 203

Suppose that tm is even. If Trm(a21 + · · ·+ a2t ) = 0, then

Ω3 = G(η)t(p− 1)
∑
y∈F∗p

ζ−yp = −(p− 1)G(η)t.

If Trm(a21 + · · ·+ a2t ) 6= 0, then by Lemma 2.2 we have

Ω3 = G(η)t
∑
y∈F∗p

ζ−yp
∑
z∈F∗p

ζ
−Trm(a21+···+a2t )

4y z2

p

= G(η)t
∑
y∈F∗p

ζ−yp

(
ηp
(
− 1

4y

)
ηp
(
Trm(a21 + · · ·+ a2t )

)
G(ηp)− 1

)
= ηp

(
Trm(a21 + · · ·+ a2t )

)
G(η)tG(ηp)

∑
y∈F∗p

ζ−yp ηp
(
− y

4y2
)

+G(η)t

= ηp
(
Trm(a21 + · · ·+ a2t )

)
G(η)tG(ηp)

∑
y∈F∗p

ζ−yp ηp(−y) +G(η)t

= ηp
(
Trm(a21 + · · ·+ a2t )

)
G(η)tG(ηp)

2 +G(η)t.

Theorem 4.1. Let CD be a linear code defined by (1) and (2), where D = {(x1, x2,
. . . , xt) ∈ Ftq : Trm(x21 + x22 + · · ·+ x2t ) = 1}.

1. Suppose that tm > 1 is odd. Then CD is a [ptm−1 + (−1)
(p−1)(tm+3)

4 p
tm−1

2 , tm]
three-weight linear code and its weight enumerator is given by Table 3.

2. Suppose that tm is even. If t is odd and 8 | m(p− 1), then CD is a [ptm−1 +

p
tm−2

2 , tm] two-weight linear code with weight enumerator given by Table 4;

otherwise, CD is a [ptm−1 − p
tm−2

2 , tm] two-weight linear code with weight
enumerator given by Table 5.

Table 3. Weight enumerators of Theorem 4.1 for odd tm
Weight Frequency

0 1
(p− 1)ptm−2 ptm−1 − 1

(p− 1)ptm−2 + (−1)
(p−1)(tm+3)

4 p
tm−1

2 + p
tm−3

2
p−1
2 (ptm−1 + p

tm−1
2 )

(p− 1)ptm−2 + (−1)
(p−1)(tm+3)

4 p
tm−1

2 − p tm−3
2

p−1
2 (ptm−1 − p tm−1

2 )

Table 4. Weight enumerators of Theorem 4.1 for even tm

2 -
(m(p−1)

4 + 1
)
t

Weight Frequency
0 1

(p− 1)ptm−2 p+1
2 ptm−1 − p−1

2 p
tm−2

2 − 1

(p− 1)ptm−2 + 2p
tm−2

2
p−1
2

(
ptm−1 + p

tm−2
2

)
Table 5. Weight enumerators of Theorem 4.1 for even tm

2 |
(m(p−1)

4 + 1
)
t

Weight Frequency
0 1

(p− 1)ptm−2 p+1
2 ptm−1 + p−1

2 p
tm−2

2 − 1

(p− 1)ptm−2 − 2p
tm−2

2
p−1
2

(
ptm−1 − p tm−2

2

)
Advances in Mathematics of Communications Volume 13, No. 1 (2019), 195–211



204 Chengju Li, Sunghan Bae and Shudi Yang

Proof. (1) If (a1, . . . , at) = (0, . . . , 0), then by (4) we have

N = ptm−1 +
1

p
(−1)

p−1
2 G(η)tG(ηp).

If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = 0, then by (4) we have

N = ptm−2 +
1

p
(−1)

p−1
2 G(η)tG(ηp).

It follows from Lemma 3.1 that the frequency of this value is equal to ptm−1 − 1.
If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = c 6= 0, then by (4) we have

N = ptm−2 − 1

p2
(−1)

p−1
2 ηp(c)G(η)tG(ηp).

It follows from Lemma 3.1 that the frequency of this value is equal to

ptm−1 +
1

p
(−1)

p−1
2 ηp(c)G(η)tG(ηp).

By Lemma 2.1, it is easy to see that (−1)
p−1
2 G(η)tG(ηp) = (−1)

(p−1)(tm+3)
4 p

tm+1
2

if tm is odd. Note that the Hamming weight of c(a1, . . . , at) defined as (2) is equal
to

WH(c(a1, . . . , at)) = n−N(a1, . . . , at).

It is easy to see that WH(c(a1, . . . , at)) = 0 if and only if a1 = · · · = at = 0, so the
dimension of CD is tm. Then we can immediately obtain the desired results.

(2) The proof of Part 2 is very similar to that of Part 1 and we omit the details.

Example 2. (1) Let p = 3, m = 3, and t = 3. Then q = 27 and n = 6642. By
Theorem 4.1, the code CD is a [6642, 9, 4374] linear code and its weight enumerator
is

1 + 6560x4374 + 6480x4428 + 6642x4482,

which is consistent with numerical computation by Magma.
(2) Let p = 3, m = 2, and t = 3. Then q = 9 and n = 234. By Theorem 4.1, the

code CD is a [234, 6, 144] linear code and its weight enumerator is

1 + 234x144 + 494x162,

which is consistent with numerical computation by Magma.
(3) Let p = 5, m = 2, and t = 3. Then q = 25 and n = 3150. By Theorem 4.1,

the code CD is a [3150, 6, 2500] linear code and its weight enumerator is

1 + 9324x2500 + 6300x2550,

which is consistent with numerical computation by Magma.

In fact, if D = {(x1, x2, . . . , xt) ∈ Ftq : Trm(β1x
2
1 +β2x

2
2 + · · ·+βtx

2
t ) = c}, where

c ∈ F∗p and β1, β2, . . . , βt ∈ F∗q , we can similarly present the weight enumerators of
CD and we omit the details here.
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5. Complete weight enumerators of CD
In this section, we investigate the complete weight enumerators of the linear

codes CD in the two cases.
We begin to consider the first case. For a codeword c(a1, . . . , at) of CD and ρ ∈ F∗p,

let Nρ := Nρ(a1, . . . , at) be the number of components Trm(a1x1 + · · · + a2x2) of
c(a1, . . . , at) which are equal to ρ, where D = {(x1, x2, . . . , xt) ∈ Ftq \{(0, 0, . . . , 0)} :

Trm(x21+x22+· · ·+x2t ) = 0}. Then by the orthogonal property of additive characters
we have

Nρ

=
∑

x1,...,xt∈Fq
(x1,x2,...,xt)6=(0,0,...,0)

(
1

p

∑
y∈Fp

ζ
yTrm(x21+···+x

2
t )

p

)(
1

p

∑
z∈Fp

ζ
z
(
Trm(a1x1+···+atxt)−ρ

)
p

)

=
1

p2

∑
x1,...,xt∈Fq

(
1 +

∑
y∈F∗p

ζ
yTrm(x21+···+x

2
t )

p

)(
1 +

∑
z∈F∗p

ζ
zTrm(a1x1+···+atxt)−zρ
p

)

= ptm−2 +
1

p2

(
Ω1 + Ω2 + Ω3

)
,(5)

where

Ω1 =
∑
y∈F∗p

( ∑
x1∈Fq

ζ
Trm(yx2

1)
p

)
· · ·
( ∑
xt∈Fq

ζ
Trm(yx2

t )
p

)
,

Ω2 =
∑
z∈F∗p

ζ−zρp

∑
x1∈Fq

ζTrm(za1x1)
p · · ·

∑
xt∈Fq

ζTrm(zatxt)
p

=

{
−qt, if (a1, . . . , at) = (0, . . . , 0),
0, otherwise,

and

Ω3 =
∑
y,z∈F∗p

ζ−zρp

∑
x1∈Fq

ζ
Trm(yx2

1+za1x1)
p · · ·

∑
xt∈Fq

ζ
Trm(yx2

t+zatxt)
p

= G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηt(y)ζ
− z24yTrm(a21+···+a

2
t )

p .

Suppose that tm is odd. If Trm(a21 + · · ·+ a2t ) = 0, then

Ω3 = G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηp(y) = 0.

If Trm(a21 + · · ·+ a2t ) 6= 0, then

Ω3 = G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηp(y)ζ
− z24yTrm(a21+···+a

2
t )

p

= G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηp(−
1

4y
)ζ
−z2yTrm(a21+···+a

2
t )

p

= G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηp(−
y

4y2
)ζ
−z2yTrm(a21+···+a

2
t )

p

= G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ηp(−y)ζ
−z2yTrm(a21+···+a

2
t )

p

= −G(η)tG(ηp)ηp
(
− Trm(a21 + · · ·+ a2t )

)
.
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Thus Ω3 is independent of ρ ∈ F∗p when (a1, . . . , at) runs over Ftq.
Suppose that tm is even. If Trm(a21 + · · ·+ a2t ) = 0, then

Ω3 = −(p− 1)G(η)t.

If Trm(a21 + · · ·+ a2t ) 6= 0, then

Ω3 = G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ζ
− z24yTrm(a21+···+a

2
t )

p

= G(η)t
∑
z∈F∗p

ζ−zρp

∑
y∈F∗p

ζ
yz2Trm(a21+···+a

2
t )

p = G(η)t.

Thus Ω3 is independent of ρ ∈ F∗p when (a1, . . . , at) runs over Ftq.
It is clear that Ω1 and Ω2 both are independent of ρ ∈ F∗p when (a1, . . . , at) runs

over Ftq. Then by (5) we have

Nρ1(a1, . . . , at) = Nρ2(a1, . . . , at)

for ρ1, ρ2 ∈ F∗p. Then by Theorem 3.2 we can get directly the following theorem on
the complete weight enumerators of CD.

Theorem 5.1. Let CD be a linear code defined by (1) and (2), where D = {(x1, x2,
. . . , xt) ∈ Ftq \ {(0, 0, . . . , 0)} : Trm(x21 + x22 + · · ·+ x2t ) = 0}.

1. If tm > 1 is odd, then the complete weight enumerator of CD is given by Table
6.

2. If tm is even, then the complete weight enumerator of CD is given by Table 7.

Table 6. Complete weight enumerators of Theorem 5.1 for odd tm
N0 = n−

∑
ρ∈F∗p

Nρ

Nρ(ρ ∈ F∗p) Frequency

0 1
ptm−2 ptm−1 − 1

ptm−2 − p tm−3
2

p−1
2 (ptm−1 + p

tm−1
2 )

ptm−2 + p
tm−3

2
p−1
2 (ptm−1 − p tm−1

2 )

Table 7. Complete weight enumerators of Theorem 5.1 for even tm
N0 = n−

∑
ρ∈F∗p

Nρ

Nρ(ρ ∈ F∗p) Frequency

0 1

ptm−2 ptm−1 + (−1)(
m(p−1)

4 +1)t(p− 1)p
tm−2

2 − 1

ptm−2 + (−1)(
m(p−1)

4 +1)tp
tm−2

2 (p− 1)
(
ptm−1 − (−1)(

m(p−1)
4 +1)tp

tm−2
2

)
Now we are ready to consider the second case. For a codeword c(a1, . . . , at) of

CD and ρ ∈ F∗p, let Nρ := Nρ(a1, . . . , at) be the number of components Trm(a1x1 +
· · · + a2x2) of c(a1, . . . , at) which are equal to ρ, where D = {(x1, x2, . . . , xt) ∈
Ftq : Trm(x21 + x22 + · · · + x2t ) = 1}. Then by the orthogonal property of additive
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characters we have

Nρ

=
∑

x1,...,xt∈Fq
(x1,x2,...,xt)6=(0,0,...,0)

(
1

p

∑
y∈Fp

ζ
y
(
Trm(x21+···+x

2
t )−1

)
p

)(
1

p

∑
z∈Fp

ζ
z
(
Trm(a1x1+···+atxt)−ρ

)
p

)

=
1

p2

∑
x1,...,xt∈Fq

(
1 +

∑
y∈F∗p

ζ
yTrm(x21+···+x

2
t )−y

p

)(
1 +

∑
z∈F∗p

ζ
zTrm(a1x1+···+atxt)−zρ
p

)

=ptm−2 +
1

p2

(
∆1 + ∆2 + ∆3

)
,

(6)

where

∆1 =
∑
y∈F∗p

ζ−yp

( ∑
x1∈Fq

ζ
Trm(yx2

1)
p

)
· · ·
( ∑
xt∈Fq

ζ
Trm(yx2

t )
p

)
,

∆2 =
∑
z∈F∗p

ζ−zρp

∑
x1∈Fq

ζTrm(za1x1)
p · · ·

∑
xt∈Fq

ζTrm(zatxt)
p

=

{
−qt, if (a1, . . . , at) = (0, . . . , 0),
0, otherwise,

and

∆3 =
∑
y,z∈F∗p

ζ−yp ζ−zρp

∑
x1∈Fq

ζ
Trm(yx2

1+za1x1)
p · · ·

∑
xt∈Fq

ζ
Trm(yx2

t+zatxt)
p

= G(η)t
∑
y∈F∗p

ζ−yp ηt(y)
∑
z∈F∗p

ζ
− z24yTrm(a21+···+a

2
t )−zρ

p .

In Section 4, it is shown that

∆1 =

{
(−1)

p−1
2 G(η)tG(ηp), if tm is odd;

−G(η)t, if tm is even.

Suppose that tm is odd. If Trm(a21 + · · ·+ a2t ) = 0, then

∆3 = G(η)t
∑
y∈F∗p

ζ−yp ηp(y)
∑
z∈F∗p

ζ−zρp = −(−1)
p−1
2 G(η)tG(ηp).

If Trm(a21 + · · ·+ a2t ) = c 6= 0, then

∆3 = G(η)t
∑
y∈F∗p

ζ−yp ηp(y)

(
ηp
(
− c

4y

)
ζ
yρ2

c
p G(ηp)− 1

)

= ηp(−c)G(η)tG(ηp)
∑
y∈F∗p

ζ
( ρ

2

c −1)y
p − ηp(−1)G(η)tG(ηp)

=

{
(−1)

p−1
2

(
ηp(c)(p− 1)− 1

)
G(η)tG(ηp), if ρ2 = c;

(−1)
p−1
2

(
− ηp(c)− 1

)
G(η)tG(ηp), if ρ2 6= c.

Theorem 5.2. Let CD be a linear code defined by (1) and (2), where D = {(x1, x2,
. . . , xt) ∈ Ftq : Trm(x21 + x22 + · · · + x2t ) = 1}. If tm > 1 is odd, then the complete
weight enumerators of CD is given as follows:

1. If (a1, . . . , at) = (0, . . . , 0), then

N0 = ptm−1 + (−1)
(p−1)(tm+3)

4 p
tm−1

2 and Nρ = 0 for ρ ∈ F∗p.
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2. If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = 0, then

N0 = ptm−2 + (−1)
(p−1)(tm+3)

4 p
tm−1

2 and Nρ = ptm−2 for ρ ∈ F∗p.

The frequency of this composition is equal to ptm−1 − 1.
3. Suppose that (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = c 6= 0.

• If ηp(c) = 1, let ρ1(c), ρ2(c) be two solutions of the equation ρ2 = c, then

N0 = ptm−2 − (−1)
(p−1)(tm+3)

4 p
tm−3

2 ,

Nρ1(c), Nρ1(c) = ptm−2 + (−1)
(p−1)(tm+3)

4 (p− 1)p
tm−3

2 ,

and Nρ = ptm−2 − (−1)
(p−1)(tm+3)

4 p
tm−3

2 for ρ ∈ F∗p, ρ 6= ρ1(c), ρ2(c).

The frequency of this composition is equal to ptm−1+(−1)
(p−1)(tm+3)

4 p
tm−1

2 .
• If ηp(c) = −1, then

Nρ = ptm−2 + (−1)
(p−1)(tm+3)

4 p
tm−3

2 for ρ ∈ Fp.

The frequency of this composition is equal to ptm−1−(−1)
(p−1)(tm+3)

4 p
tm−1

2 .

Proof. Note that (−1)
p−1
2 G(η)tG(ηp) = (−1)

(p−1)(tm+3)
4 p

tm+1
2 if tm is odd. By (6)

and the proof of Theorem 4.1, we can similarly get the desired results and we omit
the details here.

Example 3. Let p = 3, m = 3, and t = 3. Then q = 27 and n = 6642. By Theorem
5.2, the code CD is a [6642, 9, 4374] linear code and its complete weight enumerator
is

z66420 + 6560z22680 (z1z2)2187 + 6480(z0z1z2)2214 + 6642z21600 (z1z2)2241,

which is consistent with numerical computation by Magma.

Suppose that tm is even. If Trm(a21 + · · ·+ a2t ) = 0, then

∆3 = G(η)t
∑
y∈F∗p

ζ−yp
∑
z∈F∗p

ζ−zρp = G(η)t.

If Trm(a21 + · · ·+ a2t ) = c 6= 0, then we similarly have

∆3 = G(η)tG(ηp)ηp(−c)
∑
y∈F∗p

ηp(y)ζ
( ρ

2

c −1)y
p +G(η)t

=

{
G(η)t, if ρ2 = c;
ηp(c− ρ2)G(η)tG(ηp)

2 +G(η)t, if ρ2 6= c.

By (6) and Lemma 3.1, we can similarly get the following theorem on the com-
plete weight enumerators of CD if tm is even.

Theorem 5.3. Let CD be a linear code defined by (1) and (2), where D = {(x1, x2,
. . . , xt) ∈ Ftq : Trm(x21 + x22 + · · · + x2t ) = 1}. Suppose that tm is even. If t is odd
and 8 | m(p− 1), then the complete weight enumerators of CD is given as follows:

1. If (a1, . . . , at) = (0, . . . , 0), then

N0 = ptm−1 + p
tm−2

2 and Nρ = 0 for ρ ∈ F∗p.

2. If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = 0, then

N0 = ptm−2 + p
tm−2

2 and Nρ = ptm−2 for ρ ∈ F∗p.

The frequency of this composition is equal to ptm−1 − (p− 1)p
tm−2

2 − 1.
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3. Suppose that (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = c 6= 0.
• If ηp(c) = 1, then

N0 = ptm−2 − (−1)
p−1
2 p

tm−2
2 ,

Nρ = ptm−2 for c− ρ2 = 0,

Nρ = ptm−2 − (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = 1,

and Nρ = ptm−2 + (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = −1.

The frequency of this composition is equal to ptm−1 + p
tm−2

2 .
• If ηp(c) = −1, then

N0 = ptm−2 + (−1)
p−1
2 p

tm−2
2 ,

Nρ = ptm−2 − (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = 1,

and Nρ = ptm−2 + (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = −1.

The frequency of this composition is equal to ptm−1 + p
tm−2

2 .

In other cases, the complete weight enumerators of CD is given as follows:

1. If (a1, . . . , at) = (0, . . . , 0), then

N0 = ptm−1 − p
tm−2

2 and Nρ = 0 for ρ ∈ F∗p.

2. If (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = 0, then

N0 = ptm−2 − p
tm−2

2 and Nρ = ptm−2 for ρ ∈ F∗p.

The frequency of this composition is equal to ptm−1 + (p− 1)p
tm−2

2 − 1.
3. Suppose that (a1, . . . , at) 6= (0, . . . , 0) and Trm(a21 + · · ·+ a2t ) = c 6= 0.

• If ηp(c) = 1, then

N0 = ptm−2 + (−1)
p−1
2 p

tm−2
2 ,

Nρ = ptm−2 for c− ρ2 = 0,

Nρ = ptm−2 + (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = 1,

and Nρ = ptm−2 − (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = −1.

The frequency of this composition is equal to ptm−1 − p tm−2
2 .

• If ηp(c) = −1, then

N0 = ptm−2 − (−1)
p−1
2 p

tm−2
2 ,

Nρ = ptm−2 + (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = 1,

and Nρ = ptm−2 − (−1)
p−1
2 p

tm−2
2 for ηp(c− ρ2) = −1.

The frequency of this composition is equal to ptm−1 − p tm−2
2 .

Note that c, ρ ∈ Fp. It is not difficult to compute c − ρ2 for small odd prime p.
For fixed c, the number of ρ such that ηp(c− ρ2) = 1 or −1 can be determined by
cyclotomic numbers of order 2, we do not consider it here.
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Example 4. (1) Let p = 3, m = 2, and t = 3. Then q = 9 and n = 234. By
Theorem 5.3, the code CD is a [234, 6, 144] linear code and its complete weight
enumerator is

z2340 + 234z900 (z1z2)72 + 494z720 (z1z2)81,

which is consistent with numerical computation by Magma.
(2) Let p = 5, m = 2, and t = 3. Then q = 25 and n = 3150. By Theorem 5.3,

the code CD is a [3150, 6, 2500] linear code and its complete weight enumerator is

z31500 + 3150z6000 (z1z4)625(z2z3)650 + 3150z6000 (z1z4)650(z2z3)625

+ 3024z6500 (z1z2z3z4)625

+ 3150z6500 (z1z4)600(z2z3)650 + 3150z6500 (z1z4)650(z2z3)600,

which is consistent with numerical computation by Magma.

6. Concluding remarks

In this paper, we employed exponential sums to present the weight enumerators
of the linear codes CD in the two cases. It was proved that CD is a two-weight code
if tm is even and three-weight code if tm is odd. It should be remarked that the
weight enumerators of CD in the first case generalize the results in [17] and [18]. The
complete weight enumerators of the linear codes CD were also investigated. Linear
codes with two and three weights are closely related to strongly regular graphs and
association schemes. It would be nice if more two-weight and three-weight linear
codes can be found.
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