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Modern optical imaging possesses a huge information capacity whose corresponding space-bandwidth product (SBP)
reaches tens of megapixels. However, despite the advances in optical and electronic devices, the SBP of an optical
microscope is greatly limited, resulting in a reduced field of view or resolution of an image. In this paper, we exploit
the Kramers–Kronig relations in digital holography to achieve high SBP imaging, demonstrating a complex amplitude
image that can surpass the SBP of a bright-field image. The capability of the proposed method is demonstrated by
imaging static samples and biological tissues. We successfully measure a 4.2-megapixel complex amplitude image
whose bright-field counterpart exhibits 16.7 megapixels. © 2019 Optical Society of America under the terms of the OSA
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1. INTRODUCTION

The space-bandwidth product (SBP) [1] of an imaging system
describes the amount of information generated by the system.
In microscopy, the SBP is defined by the product of the area of
the field of view (FoV) and the area of the spatial frequency band
of an image. Although the SBP of a modern microscope reaches up
to tens of megapixels, the practical SBP is limited to only a few
megapixels. This is because the number of pixels in a commercially
available image sensor is much lower than the SBP the optical
microscope can provide. Thus, the majority of optical information
remains undetected, limiting the advance of microscopy for large-
scale high-throughput imaging, which is essential for digital histol-
ogy [2], drug discovery [3], and cell biology [4].

Recently, several methods have attempted to overcome the
limitations of the SBP. Based on phase-retrieval algorithms,
iterative methods such as Fourier ptychography [5,6], out-of-
focus imaging [7], and pixel super-resolution [8] offer enhanced
SBPs in imaging that exceed SBPs of detectors. However, there are
certain prerequisites if these methods are to obtain correct
images; Fourier ptychography requires images to have data redun-
dancy in the frequency domain, out-of-focus imaging needs a
weakly scattering sample and images at different axial positions,
and the pixel super-resolution method requires precisely con-
trolled subpixel shifts between images. Furthermore, since these
methods enhance SBPs by combining information from multiple
images, they require multiple measurements and have low SBPs
per measurement.

An interesting approach related to this issue can be found
in radio communication. Single-sideband modulation adopts a

complex amplitude signal to reduce signal bandwidth [9], exploit-
ing the fact that the bandwidth of a complex amplitude signal is
smaller than that of a real-valued signal. Since the same principle
holds in imaging [10], a similar strategy can be considered in op-
tical microscopy; one can measure a complex amplitude image
instead of an intensity image to obtain a higher SBP, because
the bandwidth of a complex amplitude image is less than that
of an intensity image at the same FoV.

Holographic imaging is an effective way to acquire a complex
amplitude image with a microscope and to investigate transparent
microscopic objects such as cells and tissues [11–13]. In particu-
lar, off-axis holography [14,15] enables single-shot measurement
of a complex amplitude image. This is achieved with an off-axis
interferogram that isolates the complex amplitude image from its
twin image, and autocorrelation in the spatial frequency domain.
However, as a result, an off-axis interferogram has a broad band-
width, which is inefficient regarding the SBP of the complex
amplitude image.

To improve the SBP of off-axis holographic imaging, various
techniques have been suggested. For example, methods utilizing
multiplexing [16–18] and aliasing [19] show efficient uses of the
finite bandwidth of an image sensor. Alternatively, reductions in
the interferogram bandwidth are achieved by subtracting the
autocorrelation using multiple interferograms [20,21], or by sup-
pressing it through numerical methods [22,23], speckle [24], a
wavelet transform [25], Hilbert transform [26], or an optimiza-
tion algorithm [27], at the cost of sample constraints. Nonlinear
filtering methods based on the Fresnelet transform [28], the ceps-
trum [29], an iterative algorithm [30], and a local weighted least
squares estimation [31] suppress the autocorrelation without
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imposing a condition on a sample. However, they require time-
consuming iterative processes, a priori information about samples,
or certain imaging conditions. The Fresnelet method requires a
Fresnel hologram and different thresholding of Fresnelet coeffi-
cients depending on the sample. The cepstrum method and the
iterative algorithm require a strong reference and a complex ampli-
tude image to be confined within a quadrant of the spatial fre-
quency domain. The least squares estimation needs modification
in weighting windows and sampling conditions depending on local
spatial frequency of an interferogram. Furthermore, none of the
previous studies has demonstrated the capability of off-axis holo-
graphic imaging to surpass bright-field imaging regarding the SBP.

Here, we propose and experimentally demonstrate a general
method for high SBP holographic imaging exploiting the
Kramers–Kronig (KK) relations. To retrieve a complex amplitude
image, we introduce a complex analytic function whose real part is
described by an off-axis interferogram. Then the KK relations re-
cover the complex analytic function, from which the complex am-
plitude image is retrieved. The proposed method is guaranteed by
the analyticity of the complex function that does not impose a
constraint on a sample. Importantly, the analyticity holds even
when the complex amplitude image is completely overlapped with
its autocorrelation in the frequency space of the interferogram.
Thus, the proposed method requires a greatly reduced interfero-
gram bandwidth, achieving high SBP imaging beyond what has
been demonstrated in conventional off-axis holographic imaging.
We demonstrate the capability of the proposed method by imag-
ing various samples, including a resolution target, polystyrene
beads, human breast tissue, and mouse brain tissue. Furthermore,
by maximizing the capability of the method with anamorphic im-
aging, we successfully measured a 4.2-megapixel complex ampli-
tude image whose bright-field counterpart exhibits an SBP (16.7
megapixels) greater than the SBP of the detector (12 megapixels).

2. PRINCIPLE

A. Conventional Off-Axis Holographic Imaging

In conventional off-axis holographic imaging, a reference beam
R�r� interferes with a sample beam S�r� with a slight tilt angle
θ. The reference beam is a quasi-plane wave with a wavelength of
λ, which is expressed as R�r� � R0ei2πνR ·r , where νR is the spatial
frequency vector of R�r� with jνRj � sin θ∕λ. Then the two
beams form an interferogram, I�r� � jS � Rj2, whose Fourier
transformation can be written as

Ĩ�ν� � Ã�ν� � B̃�ν − νR� � B̃��−ν − νR�, (1)

where Ã�ν� � F �jSj2 � jRj2�, B̃�ν� � F �R0S�, and F indicates
Fourier transform. In Eq. (1), B̃�ν − νR� is centered at νR due to
the spatial modulation of R�r�; conventional off-axis interferom-
etry utilizes this translation to isolate B̃�ν − νR� from Ã�ν�.

The signal isolation is achieved by choosing a large νR to avoid
overlaps among the three terms in Eq. (1). The exact condition for
νR can be determined by considering the pupil function of an
imaging system. For an ideal imaging system having a numerical
aperture of an objective lens of NAobj and a transverse magnifi-
cation of M , the pupil function P̃�ν� can be expressed as

P̃�ν� �
�
1, jνj ≤ NAobj∕λM
0, jνj > NAobj∕λM

: (2)

Thus, a sample beam transmitted through the imaging system
is band-limited; S̃�ν� � P̃�ν�S̃�ν�. Also, B̃�ν� becomes band-
limited, i.e., B̃�ν� � R0P̃�ν�S̃�ν�. Similarly, Ã�r� is band-limited
and has a Fourier transform defined within the autocorrelation of
P̃�ν�, which has a radius of 2NAobj∕λM [32]. Thus, to guarantee
no overlap between Ã�r� and B̃�ν − νR�, νR must satisfy

jνRj > 3
NAobj

λM
: (3)

Under this condition, B̃�ν� can be obtained by filtering in the
frequency domain, as B̃�ν� � Ĩ�ν� νR�P̃�ν�. The complex am-
plitude image, R0S, is then retrieved by the inverse Fourier trans-
formation of B̃�ν�. Ideally, the condition in Eq. (3) can be met by
adequately adjusting θ. However, in practice, this condition is met
by reducing the size of a pupil function (either by increasing mag-
nification or decreasing the numerical aperture) due to the limited
bandwidth of the detector. As a result, the SBP of a complex
amplitude image is greatly limited in the conventional off-axis
method.

B. Kramers–Kronig Holographic Imaging

The KK relations connect the imaginary and real parts of a
complex function that is analytic in the upper half-plane
(UHP) [33,34]. For example, a function f (ω) that is analytic
in the UHP of ω satisfies

Re�f �ω�� � 1

π
p:v:

Z
∞

−∞

Im�f �ω 0��
ω 0 − ω

dω 0, (4a)

Im� f �ω�� � −
1

π
p:v:

Z
∞

−∞

Re�f �ω 0��
ω 0 − ω

dω 0, (4b)

where p.v. indicates Cauchy principal value. First, we propose
a function χ�r� � log�1� β�r��, where β�r� is the sample-
reference ratio; β�r� � S�r�∕R�r�. From the definition, the real
and imaginary parts of χ�r� are expressed as (see Supplement 1)

Re� χ�r�� � log j1� β�r�j � 1

2
�log I�r� − log jR�r�j2�, (5a)

Im� χ�r�� � arg�1� β�r��: (5b)

Note that the real part can be obtained from the interferogram
and the image of the reference beam. The full knowledge of
χ�r� gives the complex amplitude of a sample beam as S�r� �
R�r��eχ�r� − 1�. However, direct access to χ�r� is not possible,
since the imaginary part cannot be directly measured. We apply
the KK relations to solve this problem. Provided that χ�r� follows
the KK relations, its imaginary part can be obtained from its real
part through Eq. (4b), which in turn gives the complex amplitude
of a sample beam. Therefore, the validity of the KK relations, or
equivalently, the analyticity of χ�r�, becomes the key condition
for successful retrieval of S�r� from an interferogram.

The analyticity condition for χ�r� can be found by rewriting it
using a Taylor expansion,

χ�r� �
X∞
n�0

−1n

n� 1
�β�r��n�1, (6)

where jβ�r�j < 1 is assumed. Since χ�r� is a power series
of β�r�, the analyticity of χ�r� is guaranteed by the analyticity
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of β�r� [35,36]. If we assume an off-axis configuration where
R�r� � R0e−i2πνR ·r , β�r� is expressed as

β�r� � 1

R0

Z
∞

−∞
S̃�νk, r⊥� exp�i2π�νk � jνRj�rk�dνk, (7)

where r � rkr̂k � r⊥r̂⊥ with vR · r̂k � jvRj and νR · r̂⊥ � 0; and
S̃�vk, r⊥� is the one-dimensional (1D) Fourier transform of S�r�
with respect to rk. Using the fact a function f �x� is analytic in the
UHP of x when its Fourier transform has only positive spatial
frequency components [37], β�r� becomes analytic in the
UHP of rk, when vk � jνRj > 0 for every vk. Exploiting the fact
that S�r� is band-limited by the pupil function [Eq. (2)], the ana-
lyticity condition for β�r� in the UHP of rk can be expressed in
terms of jνRj as (see Supplement 1 for details about the analyticity
and computation of discrete signals)

jνRj >
NAobj

λM
: (8)

As a result, Eq. (8) guarantees the use of the KK relations between
Eqs. (5a) and (5b). In deriving Eq. (8), no condition of the sample
beam is required except its band-limitedness. Note that Eq. (8) is
a greatly relaxed condition compared to the case of the conven-
tional off-axis method [Eq. (3)]. The proposed method shows a
four-fold increase in the SBP compared to the conventional off-
axis method with a horizontally/vertically modulated reference
beam (or 3.34-fold increase with a diagonally modulated refer-
ence; see Supplement 1 for details).

3. EXPERIMENTAL RESULTS

A. Holographic Imaging With and Without a Spectral
Overlap

To demonstrate the capability of the proposed method, various
samples are imaged, under the condition where Ã�ν� and B̃�ν −
νR� severely overlap in the frequency space; jνRj�NAobj∕λM�ε

with ε > 0. Interferograms of a 1951 United States Air force
(USAF) resolution target (#59-153, Edmund Optics, Barrington,
New Jersey, USA) and a 10-μm-diameter polystyrene bead
(72986, Sigma-Aldrich, Missouri, USA) are imaged. The exper-
imental setup is shown in Fig. S2. Polystyrene beads are immersed
in an index-matching oil with a refractive index of 1.56. Next,
complex amplitudes are reconstructed by the proposed method
and by the conventional off-axis method, respectively. For
comparison, an identical interferogram per sample is used for
the two methods. To remove the complex amplitude of illumi-
nation, each complex amplitude image of a sample is divided
with that measured in the absence of a sample throughout the
experiment.

The experimental results are shown in Fig. 1. In the proposed
method, the USAF resolution target shows uniform amplitudes
and phases at the position of patterns [Figs. 1(a) and 1(b)].
The result of the polystyrene bead shows uniform amplitude
and a spherical phase distribution that are consistent with the
known shape of the sample [Figs. 1(c) and 1(d)]. The polystyrene
bead has a refractive index of 1.575 (at λ � 632.8 nm), resulting
in a phase delay of 2.73 rad, which is consistent with the result
[see inset in Fig. 1(d)].

However, in the conventional method, the amplitude and
phase of both samples are severely distorted [Figs. 1(e)–1(h)].
The USAF resolution target exhibits stronger noise than for
the case of the polystyrene bead, because of the broad spectrum
of Ã�ν�. This is expected from an off-axis interferogram whose
fringe pattern has low spatial frequency [Fig. 1(i)]. Due to weak
spatial modulation, Ã�ν� and B̃�ν − νR� are severely overlapped
[Fig. 1(j)]. In such a condition, only the analyticity in Eq. (8)
is satisfied, not the separation condition in Eq. (3). Thus, the
proposed method can reconstruct correct complex amplitude
images, while the conventional off-axis method cannot.

To investigate the validity of the proposed method in a
conventional condition, the two methods are compared when
Ã�ν� and B̃�ν − νR� are separated in the frequency space;

Fig. 1. Experimental demonstration with a spectral overlap. (a)–(d). Experimental results using the proposed method showing a USAF 1951 resolution
target (a) and (b), and a 10-μm-diameter polystyrene bead (c) and (d). (e)–(h) Experimental results using a conventional off-axis method showing the
resolution target (e) and (f ), and the polystyrene bead (g) and (h). (i) Interferogram in the experimental condition. (j) Fourier transform of (i). (Insets) Line
profiles of (d) and (h). The red dashed lines correspond to a phase value of 2.73 rad. Scale bars indicate 10 μm.
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jνRj > 3NAobj∕λM . Again, the USAF resolution target and a
10-μm-diameter polystyrene bead are used for imaging. The ex-
perimental results of the two different methods are shown in
Fig. 2. The upper row corresponds to the result of the proposed
method [Figs. 2(a)–2(d)], and the bottom row corresponds to the
result of the conventional off-axis method [Figs. 2(e)–2(h)]. Both
methods show clear holographic images of the USAF resolution
target and polystyrene bead. Again, the measured phase value of
the polystyrene bead agrees with the expected value of 2.73 rad
[see insets in Figs. 2(d) and 2(h)]. More importantly, the results of
the two different methods agree with each other. It confirms that
the proposed method reconstructs identical information with the
conventional off-axis field retrieval method. In this case, the off-
axis interferogram has a fringe pattern with high spatial frequency
[Fig. 2(i)]. The strong spatial modulation of the reference beam
separates B̃�ν − νR� from Ã�ν� [Fig. 2(j)]. Consequently both the
separation condition in Eq. (3) and the analyticity condition in
Eq. (8) are satisfied.

B. Wide Field of View Imaging

The biggest advantage of the proposed method is the enhance-
ment in the SBP. Due to the reduced bandwidth of an interfero-
gram, a large amount of information can be measured with a
detector having a finite bandwidth and a fixed number of pixels.
As an experimental demonstration, wide FoV imaging is con-
ducted with human breast tissue. The tissue is prepared with
the standard procedure of formalin fixation and paraffin embed-
ding. For imaging, an objective lens with an NA of 0.4 is adopted
(UPLSAPO 10 × 2, Olympus, Tokyo, Japan). The total magni-
fication of the setup is kept at 10, identical to the magnification of
the objective lens.

The measured quantitative phase image is shown in Fig. 3(a).
The interferogram is imaged when Ã�ν� and B̃�ν − νR� are
completely overlapped [Fig. 3(b)]. The FoV of the image is
1.32 × 0.88 mm with a diffraction-limited size of 0.96 μm.

Insets (i, ii) clearly show fine structures of the tissue. The SBP
of the complex amplitude image is 1.46 megapixels [the area
of the FoV, 1.16 mm2, multiplied by the area of spatial frequency
band, π�NA∕λ�2]. Figure 3(b) shows the Fourier spectrum of the
measured off-axis interferogram. The conventional off-axis
method cannot be adopted in this condition, because the diam-
eter of Ã�ν� (0.25 μm−1) takes 78% of the lateral bandwidth of
the detector (0.32 μm−1), making it impossible to avoid the spec-
tral overlap.

The SBP of the proposed method can be further improved by
introducing anamorphic imaging. The bandwidth required for
the proposed method in the direction perpendicular to the modu-
lation is half the bandwidth required in the modulation direction
(see Supplement 1 for details). By magnifying the image differ-
ently in x and y directions, the SBP can be further increased. As a
proof of concept, wide FoV imaging in the anamorphic condition
is demonstrated. First, the experimental setup is modified as in
Fig. S2(b). The anamorphic imaging is achieved with two sets
of 4-f telescopic imaging arrays using cylindrical lenses. The
same objective lens as in the case of human breast tissue is
adopted. The total magnification of the setup is 8.333 and
4.166 in x and y directions, respectively. Mouse brain tissue, pre-
pared according to the protocol in [38], is imaged. The aberration
induced by the cylindrical lenses has been numerically compen-
sated (see Supplement 1).

The measured quantitative phase image is shown in Fig. 4. We
found a diagonal fringe in the phase originating from the surface
reflection between two coverslips, due to variation in optical
thickness across the wide FoV [Fig. 4(a)]. This artifact is sup-
pressed with the assumption that the sample does not exhibit
a structure larger than 100 μm (details in Supplement 1).

The corrected image is shown in Fig. 4(b). The FoV of the
images is 1.58 × 2.11 mm with a diffraction-limited size of
0.96 μm. The SBP of the measured complex amplitude image
is 4.2 megapixels. Figure 4(c) shows the Fourier spectrum of

Fig. 2. Experimental demonstration without a spectral overlap. (a)–(d) Experimental results using the proposed method showing a 1951 USAF res-
olution target (a) and (b), and a 10-μm-diameter polystyrene bead (c) and (d). (e)–(h) Experimental results using a conventional off-axis method showing
the resolution target (e) and (f ), and the polystyrene bead (g and h). (i) Interferogram in the experimental condition. (j) Fourier transform of (i). (Insets)
Line profiles of (d) and (h). The red dashed lines correspond to a phase value of 2.73 rad. Scale bars indicate 10 μm.
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the off-axis interferogram. The term B̃�ν − νR� completely occu-
pies the vertical bandwidth of the detector, and Ã�ν� exceeds the
bandwidth of the detector. Consequently, the conventional off-
axis method suffers from spectral overlap (see Supplement 1).
In addition, bright-field microscopy will not be free from aliasing
at this imaging condition. In Fig. 4, however, bright-field micros-
copy is unsuitable because the sample is a 3-μm-thick unstained
brain tissue slice. Thus, the sample is highly transparent, which
can be visualized with quantitative phase images, not with inten-
sity images. On the contrary, the proposed method enables cor-
rect retrieval of a complex amplitude image. Furthermore, the
bright-field counterpart of the measured complex amplitude
image has an SBP of 16.7 megapixels. Considering that the
SBP of the detector is 12 megapixels, the amount of information
measured in the proposed method exceeds not only that of the

conventional off-axis method, but also that of bright-field micros-
copy. In Fig. 5, the SBPs per measurement of various methods are
shown as a function of the pixel count of a detector. It is assumed
that the pixel count of a detector becomes a bottleneck to SBPs.
Each line indicates the maximum available SBP per measurement
for a given detector pixel count. Thus experimental values lie be-
low their corresponding lines. Iterative high-SBP techniques [5]
exhibit relatively low SBP per measurement because of data re-
dundancy and multiple measurements. Instead, they take advan-
tage of simple setups without the need of interferometry. Data
points of references are calculated using the following values.
For out-of-focusing imaging pixel super-resolution (OFI-PSR)
[7], 4.6 mm2 FoV, 0.3 NA at 532 nm, five images, and the pixel
count of 1.45 million are used. For Fourier ptychography [5],
120 mm2 FoV, 0.5 NA at 632 nm, 137 images, and the pixel

Fig. 3. Experimental demonstration of wide field of view quantitative phase imaging. (a) Measured quantitative phase image of breast tissue with the
proposed method. Insets show magnified images at different positions. (b) Fourier spectrum of an interferogram.

Fig. 4. Experimental demonstration with anamorphic imaging. (a) Quantitative phase image of mouse brain tissue retrieved using the proposed
method. (b) Corrected image of (a), where the multiple reflections induced by coverslips are removed (indicated with white arrows). (c) Fourier spectrum
of an interferogram.

Research Article Vol. 6, No. 1 / January 2019 / Optica 49

https://doi.org/10.6084/m9.figshare.7423859


count of 23 million are used. For pixel super-resolution, 24 mm2

FoV, 0.5 NA at 500 nm, 36 images, and the pixel count of five
million.

4. DISCUSSION AND CONCLUSION

We have demonstrated a method for high-SBP off-axis holo-
graphic imaging. Exploiting the KK relations, the proposed
method retrieves an exact complex amplitude without imposing
any constraint on a sample. It efficiently utilizes the interferogram
bandwidth to provide a 3.34- to 4-fold increase in the SBP
compared to the conventional method. Furthermore, with ana-
morphic imaging, the bright-field counterpart of the measured
complex amplitude exhibits an SBP greater than the SBP of
the detector.

The proposed method is fundamentally different from pre-
vious methods for zero-order suppression under the spectral over-
lap in off-axis geometry. The proposed method requires a single
interferogram. This is in contrast to the previous method, where
multiple interferograms are required [20,21,24,39,40]. In addi-
tion, the proposed method provides an analytic expression for
the complex amplitude without imposing a constraint on a
sample. Thus, the retrieval process is simple, and the measured
complex amplitude is exact. Existing methods require assump-
tions for a sample, such as uniform intensity [22,26], weak phase
[23,41], weak phase gradient [25], or slowly varying complex am-
plitude [27,42], to guarantee correct measurement of complex
amplitudes.

Despite similarities with the nonlinear filtering method [29],
the proposed method does not require a complex amplitude
image to be confined within a quadrant of the frequency space.

On the other hand, the proposed method requires the analyticity
condition of the KK relations, which allows a reduced interfero-
gram bandwidth that is less than that demonstrated in the pre-
vious study. Importantly, the proposed method does not require a
bandwidth that is more than the size of a pupil function in the
direction perpendicular to modulation. This feature enables a
further enhanced SBP by adopting anamorphic imaging. Also,
by generalizing the principle to three dimensions, e.g., using
χ�x, y, νz� and its analyticity in UHP of νz , the proposed method
can provide a framework that can embrace the different principles
for off-axis [29] and on-axis [43] configurations. The proposed
method requires an image of the reference beam in addition to
an off-axis interferogram. Nevertheless, the image of the reference
beam needs to be measured once. Thus, the proposed method
effectively becomes a single-shot method with a stable setup. This
becomes particularly useful for large FoV image stitching or time-
lapse imaging, where a large number of images are used. It should
also be noted that the proposed method is available with spatially
coherent light.

The proposed method can be combined with other tech-
niques, such as synthetic aperture microscopy [44], optical
diffraction tomography [45–47], and common-path off-axis
interferometers [48–50]. We envision that the proposed method
will benefit holographic imaging with an enhanced SBP and
become an effective tool for 3D imaging, high-throughput histo-
pathology, and large-scale studies of cells and tissue.
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