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ABSTRACT We propose the RLizard key encapsulation mechanism (KEM), whose security depends on
the ring learning with errors and ring learning with rounding problems. Because RLizard operates on a
special type of ring, it is more efficient in terms of both the clock cycles required for key generation and
the key size compared with the original Lizard scheme. To demonstrate the superiority of the proposed
method over other well-known KEMs, we compared their performances in the 32-bit ARM Internet of
Things (IoT) environment. The performance analysis showed that the RLizard KEM requires the fewest
clock cycles for key generation, encapsulation, and decapsulation when the parameters are set to support
a security level comparable with that of AES-128. In summary, the RLizard KEM is expected to be used
for secure communication and authentication between IoT endpoint devices, whose computational power is
generally limited.

INDEX TERMS Key encapsulation mechanism, post-quantum cryptography, Internet of Things, security.

I. INTRODUCTION
We live in the age of the Internet of Things (IoT). According
to Statistica, as of 2018, 23.14 billion devices around the
world are connected to the IoT, and this number is expected to
increase to 75.44 billion by 2025 [1]. The IoT can be charac-
terized by communication withminimum human intervention
between uniquely identified virtual objects that are associated
with some physical objects, including sensors, from which
environmental and contextual information can be acquired;
self-configured networks, over which such communication
occurs; intelligent behavior based on automatic decisions
made according to the information obtained by the cooper-
ation of numerous sensors; and new types of applications
working on top of them [2].

The security of IoT-based systems and services is a crit-
ical issue that requires careful consideration. Compared to
conventional Internet-connected devices, less computational
power is available to the majority of participating devices
in the IoT. Thus, providing security to IoT systems is a
challenge. Previous studies have found vulnerabilities in
many existing IoT systems and services owing to the lack of

security considerations [3]–[6]. Malicious entities can exploit
such vulnerabilities to inflict severe damage on IoT systems.
Therefore, securing the IoT is of great significance.

The essential properties required to provide security to
IoT systems are confidentiality, integrity, and authenticity
among IoT devices. In this regard, a basic security operation
is the sharing of random session keys between such devices.
However, the development of quantum computers and attacks
performed with such computers are expected to render tra-
ditional cryptosystems, such as RSA, Diffie-Hellman, and
ECC, obsolete in the near future, because the underlying
hardness problems of such cryptosystems will be completely
broken by quantum attacks [7].

To address the above-mentioned problems, researchers
have been studying key encapsulation mechanisms (KEMs)
with which random session keys can be shared between
two devices, and such mechanisms are secure even against
quantum attacks [8]–[15]. Furthermore, in line with this
direction, in 2017, NIST launched a project to standard-
ize post-quantum cryptographic algorithms, which involves
the standardization of post-quantum KEM (pq-KEM) that
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is secure against quantum adversaries. Many schemes have
been proposed as candidates for pq-KEM [16].

In spite of such active research on pq-KEM, few studies
have investigated pq-KEM in consideration of the IoT envi-
ronment. In view of the importance of IoT security as dis-
cussed above, research on pq-KEM for the IoT environment
is crucial. In this paper, we propose a new pq-KEM to support
the basic security operation in the IoT environment. The pro-
posed KEM, namely Ring Lizard (abbreviated as RLizard),
is a modified version of the original Lizard scheme [12],
suited for the IoT environment. As the name of the scheme
suggests, it involves special mathematical structures called
rings. RLizard is advantageous in terms of the required com-
putational and storage resources. As the key generation phase
of the original Lizard scheme requires multiplication of two
huge matrices, its computational cost is rather high. By con-
trast, in the case of RLizard, such expensive computation is
replaced by simple multiplication of two polynomials, and
also the sizes of both the public key and the secret key are
also shrunk compared to the original Lizard scheme.

To evaluate the performance of RLizard in the IoT environ-
ment, we compare it with existing pq-KEMs by implementing
and testing them in the ARM 32-bit MCU environment,
which is known to be widely used for IoT devices. For
efficient implementation, we reduced the number of required
clock cycles compared to the RLizard implementation sub-
mitted to the NIST for standardization [16].

We found that the proposed scheme involves the fewest
clock cycles in all operations compared with the other
schemes. Specifically, 102∼104 bits were required to provide
a similar level of quantum security and the number of clock
cycles required for key generation, encapsulation, and decap-
sulation were reduced by around 30.5%, 40.6%, and 3.8%,
respectively, compared to Kyber [10], which consumes the
fewest clock cycles among the other schemes.

The remainder of this paper is organized as follows.
Section II introduces the preliminaries to provide a better
understanding of the proposed scheme. Section III reviews
the related work. Section IV presents the proposed KEM,
i.e., RLizard, including its security proof. Section V discusses
the implementation of the proposed scheme and compares its
performance with that of other schemes in the IoT environ-
ment. Finally, Section VI concludes the paper.

II. PRELIMINARIES
A. NOTATIONS
All logarithms are taken to the base 2 unless otherwise indi-
cated. For a positive integer q, we use Z ∩ (−q/2, q/2] as
a representative of Zq. For a real number r , bre denotes the
integer nearest to r , rounded up in the case of a tie. We denote
vectors in bold, e.g., a, and every vector in this paper is a
column vector. The norm ‖·‖ is always the 2-norm in this
paper. We use x ← D to denote the sampling of x according
to the distribution D. The sampling is uniform when D is
a finite set. For an integer n ≥ 1, Dn denotes the product

of i.i.d. random variables Di ∼ D. We use λ to denote
the security parameter throughout the paper: all known valid
attacks against the cryptographic scheme under study should
take �(2λ) bit operations. Here f (λ) = �(g(λ)) means that
f (λ) is asymptotically lower bounded by g(λ), i.e., there exists
some k and λ0 which satisfies f (λ) ≥ k ·g(λ) for any λ ≥ λ0.
For an integer d , let 8d (X ) be the d-th cyclotomic poly-

nomial of degree n = φ(d), where φ(·) is Euler’s totient
function which denotes the number of coprime positive inte-
gers below the input. We express the cyclotomic ring and its
residue ring modulo an integer q as R = Z[X ]/(8d (X )) and
Rq = Zq[X ]/(8d (X )), respectively. Further, we identify the
vectors of Znq with the elements of Rq by (a0, ..., an−1) 7→∑n−1

i=0 aiX
i. For any distribution D over Zq, sampling a poly-

nomial
∑n−1

i=0 aiX
i
∈ Rq from Dn implies sampling the

coefficient vector (a0, ..., an−1) from the distribution.
For any real σ > 0, the discrete Gaussian distribution

DGσ is a probability distribution with support Z that assigns
a probability proportional to exp(−πx2/σ 2) to each x ∈ Z.
Note that the variance of DGσ is close to σ 2/2π unless σ is
extremely small. For an integer 0 ≤ h ≤ n, the distribution
HWT n(h) samples a vector uniformly from {0,±1}n, under
the condition that it has exactly h nonzero entries.

B. PUBLIC-KEY ENCRYPTION AND KEY
ENCAPSULATION MECHANISM
Public-key encryption (PKE) is an encryption system that
allows encryption of a message using a public key, which
has a corresponding secret key, and a ciphertext can be
decrypted only when the secret key is available. Formally,
PKE consists of four algorithms, namely Setup, KeyGen,
Enc, and Dec, where Setup(1λ) outputs a parameter set pp,
KeyGen(params) outputs a pair of public key and secret
key (pk, sk), Enc(pk,m) outputs a ciphertext c of an input
plaintextm, and Dec(sk, c) outputs a plaintextm. We say that
a PKE scheme is secure (indistinguishable) against chosen-
plaintext attacks, i.e., it has IND-CPA security, if any adver-
sary A does not have a non-negligible advantage, which
means AdvCPA

PKE (A) =∣∣∣∣∣∣∣∣∣∣
Pr


(pk, sk)← KeyGen(pp)

(m0,m1)← A(pk)
b = b′ : b← {0, 1}

c∗← Enc(pk,mb)
b′← A(pk, c∗)

− 1
2

∣∣∣∣∣∣∣∣∣∣
< ε(λ),

where ε(λ) > 0 is a negligible function in λ.
A KEM is a one-round protocol that enables two parties

to share an ephemeral key. Specifically, a sender produces
a ciphertext of an ephemeral key by using a receiver’s pub-
lic key. The ciphertext cannot be explicitly chosen by the
sender. Then, the receiver decrypts the ciphertext and obtains
the same ephemeral key. The sender’s and receiver’s algo-
rithms are called encapsulation and decapsulation, which are
denoted by Encaps and Decaps, respectively. Following the
context from [55], the entire KEM procedure is described as
a tuple of four algorithms.
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FIGURE 1. KEM protocol.

• Setup(1λ) : Generate a public parameter params.
• KeyGen(params) : For an input params, generate a
public key pk for encapsulation and a secret key sk for
decapsulation.

• Encaps(pk): For input pk, generate and output a cipher-
text c of a key K .

• Decaps(sk, c): For input sk and c, output a key K . Note
that K can be output as ⊥, which denotes decapsulation
failure.

For the readers’ easy understanding, the KEM protocol is
depicted below in Fig. 1.

A KEM scheme is said to be secure (indistinguishable)
against chosen-ciphertext attacks, i.e., it has IND-CCA secu-
rity, if any adversary given access toDecaps(sk, ·) is not able
to computationally distinguish the distribution of (pk, c,K )
and the distribution of (pk, c,K ′), where K ′ is uniformly
randomly chosen from the key space K. In other words, any
adversary A against an IND-CCA secure KEM is not able to
have a non-negligible advantage AdvCCA

KEM(A) defined as∣∣∣∣∣∣∣∣∣∣
Pr


(pk, sk)← KeyGen(pp)

b← {0, 1}
b = b′ : (c∗,K∗0 )← Encaps(pk)

K∗1 ← K
b′← ADecaps(sk,·)(pk, c∗,K∗b )

− 1
2

∣∣∣∣∣∣∣∣∣∣
.

Here, note that the decryption query cannot be applied to the
ciphertext c∗ of a given sample.

C. RING LEARNING WITH ERRORS
The ring learning with errors (RLWE) problem, which was
proposed by Lyubashevsky et al. [17], and by Stehlé et al. [18]
with a slightly different notion, is a ring variant of the learning
with errors (LWE) problem [19]. For positive integers n and q,
and an irreducible polynomial f (X ) ∈ Z[X ] of degree n, we
define the number field K := Q[X ]/(f (X )) and its ring of
integers R := Z[X ]/(f (X )). We denote by Rq the quotient
ring of R modulo q, i.e., Rq := R/qR. If f (X ) is a cyclotomic
polynomial, then it is well known that R = Z[X ]/(f (X ))
and Rq = Zq[X ]/(f (X )). In this paper, we fix the poly-
nomial f (X ) to be the 2n-th cyclotomic polynomial, where
n is a power-of-two integer, i.e., f (X ) = Xn + 1. Let χ be

a distribution over Rq that samples a polynomial with small
coefficients compared to q, and let D be a distribution
over Rq. The RLWE problem Ring-LWEn,q,χ (D) is to dis-
tinguish between the uniform distribution over R2q and the
distribution of (a, a · s + e) ∈ R2q, where a is uniformly
randomly chosen fromR2q, e is chosen from χ , and s is a secret
polynomial sampled from D.
The RLWE problem over the ring R is at least as hard

as the approximate shortest vector problem (SVP) and the
shortest independent vectors problem (SIVP) on ideal lattices
in R [17]. Although we have specified that the polynomial
f (X ) is a cyclotomic polynomial, it has recently been shown
in [20] that the hardness of RLWE is also guaranteed by the
hardness assumption of such lattice hard problems on ideal
lattices for any irreducible integer polynomial f (X ).

In practice, the power-of-2 cyclotomic polynomial f (X ) =
Xn + 1 is typically chosen as a base ring of RLWE due
to both the efficiency and the security: the simple form of
f (X ) = Xn + 1 enables very fast polynomial reduction
operations, and moreover there exist no known attacks on
RLWE over power-of-2 cyclotomic ring [21] while some
special algebraic attacks have been proposed in case of non
power-of-2 cyclotomic rings [22]–[24].

D. RING LEARNING WITH ROUNDING
The ring learning with rounding (RLWR) problem, proposed
by Banerjee et al. [25] is a derandomized version of the
RLWE problem: instead of adding an error polynomial e
to a · s, one discards some least significant bits of each
coefficient of a · s. Formally, it is defined as follows. Let n, q,
and f (X ) = Xn + 1 be defined as in the previous subsection.
Instead of error distribution χ , we add a new parameter p,
which is called a rounding modulus. We denote the quotient
ring of R modulo p by Rp = R/pR = Zp[X ]/(Xn + 1). For a
given s ∈ Rq, we denote by ARLWRn,q,p (s) the distribution of(

a,
⌊
p
q
· a · s

⌉)
∈ Rq × Rp,

where a is uniformly sampled from Rq. The RLWR problem
Ring-LWRn,q,p(D) is to distinguish the uniform distribution
overRq×Rp and the distributionARLWRn,q,p (s), where s is sampled
from D. The search version of RLWR, which aims to find s
when several samples from ARLWRn,q,p (s) are given, is known to
be at least as hard as the search version of RLWE [25], [26].

III. RELATED WORK
A. POST-QUANTUM LATTICE-BASED PKE/KEMS WITH
IND-CCA SECURITY
Lattice-based cryptography is one of the most attractive areas
of post-quantum cryptography owing to its distinctive advan-
tages of strong security, fast implementation, and versatility.
NTRU encryption [27] together with its dedicated padding
scheme [28] can be regarded as the earliest example of
a lattice-based KEM. Bernstein et al. [9] proposed a new
variant of NTRU, namely NTRU Prime, by changing the
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base ring of NTRU encryption from cyclotomic rings to new
rings without some mathematical structures to avoid future
analyses, eliminating decryption failure, and developing a
constant-time implementation. Recently, Hülsing et al. [15]
proposed an optimized software implementation for NTRU
KEM, which also allows efficient constant-time noise
sampling.

Another strategy for constructing a lattice-based IND-CCA
pq-KEM is to adopt the LWE problem or its ring or module
variants. In this approach, one can first construct IND-CPA
PKE and then use well-known CCA conversion, such as
Fujisaki-Okamoto conversion [29], along with hash func-
tions to convert it into an IND-CCA pq-KEM. -=The LWE
problem was originally adopted to construct a PKE system
by Regev [19] in 2005. A drawback of some well-known
variants of Regev’s PKE scheme [19] is that the required
parameters are too large for practical application. Lindner
and Peikert (LP) [30] addressed this problem by introducing
noise into a combination of LWE samples in the encryption
stage. NewHope [8] and Frodo [11] provide efficient KEM
instantiations from LP-style encryption. NewHope uses the
ring structure and its security is thus based on the Ring-
LWE assumption, whereas the security of Frodo is based
on the original LWE assumption. Cheon et al. [12] pro-
posed an IND-CPA PKE scheme called Lizard as well as its
IND-CCA KEM version. Lizard replaces the error sampling
process in LP encryption with deterministic rounding; thus,
it achieves extremely fast encryption. The security of Lizard
is based on both the LWE assumption and the LWR assump-
tion. Kyber [10] is a module-based KEM instantiation of
LP-style PKE, and its security is based on the module-
LWE assumption. Saber [13] replaces the Gaussian sam-
pling in key generation and encapsulation with a rounding
process, and its security is based on the module-LWR
assumption.

B. EFFICIENT IMPLEMENTATION OF POST-QUANTUM
CRYPTOGRAPHIC PRIMITIVES FOR IOT ENVIRONMENT
Guillen et al. [31] implemented NTRUEncrypt [14] in the
IoT environment and evaluated its performance. They did
not consider the key encapsulation mechanism and focused
only on NTRUEncrypt. Boorghany et al. [32] implemented
NTRUEncrypt and some authentication protocols in the
ARM7TDMI and AVR ATmega128 environments, and they
evaluated their performance, but they did not discuss the
KEM implementation. Liu et al. [33] implemented a Ring
LWE encryption scheme [17] in the AVR ATmega128 envi-
ronment in an efficient manner. Later, the same scheme [17]
was implemented and its performance was analyzed in the
ARMCortex-A9 andMSP430 environments [34], [35]. How-
ever, the KEM performance was not discussed. There are
some researches dealing with the KEM for IoT environ-
ment [36], [37]. Unfortunately, the underlying hardness prob-
lems in their methods are not known to be secure against
quantum security.

IV. RLizard KEY ENCAPSULATION MECHANISM
RLizard is a ring version of the Lizard [12] scheme, and
it has been submitted to NIST for post-quantum cryp-
tography standardization together with the non-ring ver-
sion. The security of RLizard is based on the hardness
of the Ring-LWE and Ring-LWR problems. RLizard is a
rather compact and light version of the Lizard scheme in
terms of parameter sizes and key generation speeds, which
makes it suitable for IoT implementation. It is infeasible
for Lizard to be used for IoT endpoint devices because
Lizard requires more than 1000KB storage size to store a
key pair in order to support practical level of security: the
SRAM sizes for conventional IoT endpoint devices are in the
range between a few Kilo Bytes and several hundred Kilo
Bytes [12], [38].

In terms of security, IND-CCA security for KEM is ade-
quate for current Internet applications. Furthermore, because
establishing a secure channel between entities using a shared
key is a basic primitive for all kinds of Internet activities, the
efficiency of KEMmatters a lot. One of the best known ways
to achieve an efficient quantum-safe IND-CCA KEM is to
construct a post-quantum IND-CPA PKE first, and then apply
a generic Fujisaki-Okamoto conversion which converts any
IND-CPA PKEs into IND-CCA KEMs in (quantum) random
oracle model. Direct constructions for post-quantum IND-
CCAPKE or KEM also exist [39], [40], but they require some
blow-up for parameters because of the use of trapdoor one-
way functions. Hence, as all other NIST submissions and the
original Lizard scheme do, we follow the former approach to
achieve an IND-CCA secure KEM so that we first construct
IND-CPA PKE, named as RLizard, and then apply a variant
of the Fujisaki-Okamoto transformation in [29] to it.

We present our IND-CPA PKE scheme and IND-CCA
KEM in Section IV-A and Section IV-B, respectively.

A. BASIC IND-CPA SECURE ENCRYPTION SCHEME
For the simplicity of ring operations, we choose a power-of-
two degree in the following description.
• RLizard.Setup(1λ) : Choose positive integers t , p, p′,
and q such that t ≤ p′ ≤ p ≤ q and p′|p. Let n ∈ Z
be a power of 2 and 8(X ) = Xn + 1 be the 2n-th
cyclotomic polynomial. Choose hs, hr less than or equal
to n, a private key distribution Ds over R, an ephemeral
secret distribution Dr over R, and a parameter σ for the
discrete Gaussian distribution DGσ . Output params←
(n, t, q, p, p′,Ds,Dr , σ ).

• RLizard.KeyGen(params) : Generate a random poly-
nomial a ← Rq. Sample a secret polynomial s ← Dn

s ,
and an error polynomial e← DGnσ . Let b = a · s+ e ∈
Rq. Output the public key pk ← (a, b) ∈ R2q and the
secret key sk← s ∈ R.

• RLizard.Encpk(m) : For a plaintext m ∈ Rt = R/tR,
choose r ← Dn

r and compute c′1← a · r and c′2← b · r .
Output the vector

c← (c1, c2) ∈ Rp × R′p,
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where c1←
⌊
(p/q) · c′1

⌉
∈ Rp and c2←

⌊
(p′/t) · m

⌉
+⌊

(p′/q) · c′2
⌉
∈ R′p.

• RLizard.Decsk(c) : For a ciphertext c = (c1, c2),
compute and output the polynomial

m′←
⌊
t
p
(
p
p′
· c2 − c1 · s)

⌉
∈ Rt .

Correctness. The correctness condition of the RLizard
PKE scheme is presented as follows.
Lemma 1 (Correctness): Assuming that t | p′ | p | q, the

public key encryption RLizard works correctly as long as the
following inequality holds for the security parameter λ:

n−1∑
j=0

Pr
[∣∣[e · r + s · f ]j∣∣ ≥ q

2t
−

q
2p′

]
< negl(λ)

for e =
∑n−1

i=0 eiX
i, r =

∑n−1
i=0 riX

i, s =
∑n−1

i=0 siX
i, and

f =
∑n−1

i=0 fiX
i, where ei ← DGσ , ri ← Dr , si ← Ds,

and fi ← Znq/p are independently sampled for all i’s and [·]j
denotes the coefficient of X j.

Proof: Let r be a polynomial sampled from Dn
r in the

encryption procedure, and let c′1← a · r and c′2← b · r . The
ciphertext is c = (c1 =

⌊
(p/q) · c′1

⌉
, c2 =

⌊
(p′/t) · m

⌉
+⌊

(p′/q) · c′2
⌉
). Let f ← c′1 (mod q/p) ∈ Rq/p and f ′ ← c′2

(mod q/p′) ∈ Rq/p′ so that (q/p) · c1 = c′1 − f and (q/p′) ·
c2 = c′2 − f ′. Note that f = a · r (mod q/p) is uniformly
and randomly distributed over Rnq/p independently from the
choice of r , e, and s. Then, (p/p′) · c2 − c1 · s is

(p/t) · m+ (p/q) · (c′2 − s · c
′

1)− (p/q) · (f ′ − s · f )

= (p/t) · m+ (p/q) · (e · r + s · f )− (p/q) · f ′.

Since f ′ = (a · s + e) · r (mod q/p′), an infinite norm of
f ′ is bounded by q/2p′. Hence, the correctness of RLizard
PKE scheme is guaranteed if, for all 1 ≤ j ≤ n, the j-th
coefficient of the encryption error is bounded by p/2t , or if,
|[e · r+ s · f ]j| < q/2t−q/2p′ for all j with an overwhelming
probability, where [·]j denotes the coefficient of X j. �
Security. The security of RLizard PKE scheme relies

on the hardness of Ring-LWE and Ring-LWR problems.
Looking closer, the public key of RLizard can be seen as a
Ring-LWE instance with a secret as the secret key, and the
encryption of zero is a Ring-LWR instance with the secret as
the ephemeral secret polynomial. This implies the following
theorem.
Theorem 1 (Security): The PKE scheme RLizard is

IND-CPA secure under the hardness assumption of Ring-
LWEn,q,DGσ (Dn

s ) and Ring-LWRn,q,p(Dn
r ).

Proof: The security of RLizard encryption scheme is
reduced to the simplest case that p′ equals to p, since we
assume p′|p in our parameter setting. An encryption of m can
be generated by adding (p/t) · m to an encryption of zero.
Hence, it is enough to show that the pair of public information
pk = (a, b) ← RLizard.KeyGen(params) and encryption
of zero c ← RLizard.Encpk(0) is computationally indistin-
guishable from the uniform distribution over R2q × R2q for a
parameter set params← RLizard.Setup(1λ).

We define the following sequence of distributions:
• D0 = {(pk, c) : pk← RLizard.KeyGen(params), c←

RLizard.Encpk(0)}
• D1 = {(pk, c) : pk← R2q, c← RLizard.Encpk(0)}
• D2 = {(pk, c) : pk← R2q, c← R2q}

The public key pk = (a, b) ← RLizard.KeyGen(params)
is generated by sampling an instance of Ring-LWE problem
with secret polynomial s ← Dn

s . Hence, distributions D0
andD1 are computationally indistinguishable under the Ring-
LWEn,q,DGσ (Dn

s ) assumption.
Now assume that pk is uniform random over R2q. Then, pk

and c ← RLizard.Encpk(0) together form an instance of
the Ring-LWRn,q,p(Dn

r ) problem so that D1 and D2 are com-
putationally indistinguishable under the Ring-LWRn,q,p(Dn

r )
assumption.

As a result, D0 and D2 are computationally indis-
tinguishable under the Ring-LWEn,q,DGσ (Dn

s ) and Ring-
LWRn,q,p(Dn

r ) assumptions. This implies the IND-CPA
security of the RLizard PKE scheme. �

B. THE IND-CCA SECURE KEY ENCAPSULATION
MECHANISM
Weprovide the full description of RLizard Key Encapsulation
Mechanism, namely RLizard.KEM, in this subsection.
• RLizard.KEM.Setup(1λ) : The same as that in

RLizard.Setup, additionally choosing d as a key length,
hash functions G : Rp × Rp × {0, 1}d × R2 → {0, 1}d ,
H : Rt → Rq and H ′ : Rt → {0, 1}d . Output params←
(n, t, q, p, p′, d,Ds,Dr , σ,G,H ,H ′).

• RLizard.KEM.KeyGen(params) : Sample polynomials
a ← Rq and s ← Dn

s . Generate a random vector k ←
{0, 1}n and identity it with the polynomial k ∈ R. For
0 ≤ i ≤ n − 1, sample an integer ei ← DGσ , and then
set e =

∑n−1
i=0 eiX

i
∈ Rq. Let b = a · s+ e ∈ Rq. Output

the public key pk := (a, b) ∈ R2q and the secret key
sk := (s, k) ∈ R2.

• RLizard.KEM.Encaps(params,pk) : Generate a poly-
nomial δ ← Rt . Compute r := H (δ) and d := H ′(δ).
Compute c1 := b(p/q) · a · re ∈ Rp, c2 :=

⌊
(p′/t) · δ

⌉
+⌊

(p′/q) · b · r
⌉
∈ R′p. Output K := G(c1, c2,d, δ) and

c = (c1, c2,d).
• RLizard.KEM.Decaps(params, sk, c = (c1, c2,d)) :

1. Parse the ciphertext c := (c1, c2,d).
2. Compute δ′ :=

⌊
(t/p) · ((p/p′) · c2 + s · c1)

⌉
∈ Rt .

3. Compute r ′ := H (δ′) and d′ := H ′(δ′).
4. Compute a′ :=

⌊
(p/q) · a · r ′

⌉
∈ Rp and b′ :=⌊

(p′/t) · δ′
⌉
+
⌊
(p′/q) · b · r ′

⌉
∈ R′p and set c′ :=

(a′, b′,d′).
5. If c 6= c′, then output K = G(c1, c2,d, k).
6. Else, output the shared key K = G(c1, c2,d, δ′).

Since RLizard.KEM is achieved by applying a generic con-
version [29] from IND-CPA secure PKE to IND-CCA secure
KEM, the correctness and security results are immediate.
We present formal theorems which assert our scheme
achieves correctness and IND-CCA security for complete-
ness in the following. The full proofs themselves are generic,
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and neither simple nor our contributions, so we defer them
to [29].

Correctness. The correctness of the RLizard PKE scheme
implies that of RLizard.KEM.
Theorem 2 [29]: If the RLizard PKE scheme is correct

with the probability 1−ε, then RLizard.KEM is correct except
with the probability 1 − ε in the (quantum) random oracle
model.

Security.The security of RLizard.KEM is derived from the
theorems in [29] and the IND-CPA security of the RLizard
PKE scheme. We present two theorems for the IND-CCA
security of our RLizard.KEM in the random oracle model and
quantum random oracle model.
Theorem 3 ([29], Theorem 2 and 3): For any IND-CCA

adversary B on RLizard.KEM issuing at most qD queries to
the decryption oracle, qG queries to the random oracleG, and
qH queries to the random oracle H, there exists an IND-CPA
adversary A on RLizard such that

AdvCCA
RLizard.KEM(B)

≤ qG · ε +
qH
2ω(λ)
+

2qG+1
t`
+ 3 · AdvCPA

RLizard(A),

where λ is the security parameter and ε is the decryption
failure probability of RLizard and RLizard.KEM.
Theorem 3 follows from the fact (and Theorem 2 and 3
in [29]) that underlying PKE scheme, RLizard, is
ω(λ)-spread, which means, for every (pk, sk), possible
c in the ciphertext space, and m ∈ Rt , Prr←Rq [c =
RLizard.Encpk(m; r)] ≤ 2−ω(λ).
Theorem 4 ([29], Theorem 8 and 10): For any IND-CCA

quantum adversary B on RLizard.KEM issuing at most qD
(classical) queries to the decryption oracle, qG queries to
the quantum random oracle G, qH queries to the quantum
random oracle H, and qH ′ queries to the quantum random
oracle H′, there exists an IND-CPA quantum adversaryA on
RLizard such that

AdvCCA
RLizard.KEM(B) ≤

(qH + 2qH ′ )

√
8ε(qG + 1)2 + (1+ 2qG)

√
AdvCPA

RLizard(A),

where ε is the decryption failure probability of RLizard and
RLizard.KEM.

We remark that Theorem 4 follows from ONE-WAY
CPA security of RLizard PKE scheme (and Theorem 8
and 10 in [29]) which is a weaker notion compared to the
IND-CPA security that RLizard PKE achieves.

C. PARAMETER CHOICES FOR PRACTICAL USE
We choose the parameter set for RLizard.KEM from the
following perspectives:

1) The parameter sets should allow fast implementation.
The most expensive operation in our RLizard.KEM
key generation, encapsulation, and decapsulation is the
polynomial multiplication in Rq (or Rp). Furthermore,
the rounding operation for the polynomial coefficients
can be expensive depending on the choices of the

modulus and rounding modulus. Hence, we choose
our parameters and secret distributions such that these
operations are extremely simple and efficient.

2) The parameter sets should resist all computational
attacks, such as dual attack [41] and primal attack [42].
We measured the attack complexities of all known
(quantum) attacks for the Ring-LWE and Ring-LWR
instances with respect to our parameter sets, and we
concluded that the best attack complexity is greater
than 2λ, where λ is the security parameter.
As far as we know, the best way to solve the Ring-LWE
and Ring-LWR is to deal with them as non-structured
general LWE problems. We found that attack algo-
rithms using lattice basis reduction algorithm, espe-
cially the BKZ algorithm [43], is the most efficient in
our cases. For measuring the complexity for running
the BKZ algorithm in those attacks, We follow the
conservative approach in NewHope paper [8] to regard
the BKZ complexity as solving core-SVP by applying
Grover’s quantum search [44]. (We assume that SVP of
a given lattice of dimension n is solved in time 20.268 n

according to their intensive research on quantum sieve
algorithms, discarding o(n) in the exponent). To sum
up, time complexity of the best quantum attack for
our parameter is 2104 which is an attack complex-
ity for the primal attack [42], thanks to help of the
online LWE estimator [45]. We remark that one can
find a useful guideline for attacking the LWE problem
in [46] as well. Also, we concluded that none of hybrid
attacks in [47] and [48] works well, since we have
errors of which distributions are close to discrete Gaus-
sian distributions in terms of Rényi divergence (which
means that errors are neither binary nor trinary) in our
LWE instances.

3) Decryption failure should rarely occur for our param-
eters. We set our parameters such that the decryption
failure rate is far lower than 2−λ, where λ is the security
parameter.

We instantiate RLizard.KEM with a parameter set called
RLizard104 for quantum 104-bit security (λ = 104). For
efficiency, we choose the distribution of the secret key as
Ds = HWT (hs) and that of the ephemeral secret in the
encapsulation as Dr = HWT (hr ). Further, we set the degree
of the cyclotomic polynomial, n, and modulus p′ < p < q
to be powers of two, and t = 2. In order to implement G, H ,
and uniform sampling, we utilize SHAKE-256 function [49]
with truly random seeds.

The parameters are listed in Table 1. We also provide
the estimated best attack complexity according to Albrecht’s
LWE estimator [45] as well as the decryption failure rate for
the chosen parameter set in Table 2.

V. IMPLEMENTATION AND PERFORMANCE ANALYSIS
This section discusses the implementation aspects of
RLizard. RLizard was submitted as a standard candidate
for PQC standardization [16] launched by NIST in 2017.
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TABLE 1. Suggested parameter set; n is the degree of the cyclotomic
polynomial of the base rings, t is the size of the plaintext coefficients, q is
a large modulus in Ring-LWE and Ring-LWR, p′ and p are ciphertext
modulus (Also, p is a rounding modulus for Ring-LWR), σ is a parameter
for the discrete Gaussian distribution DGσ in Ring-LWE, and hs and hr
are the Hamming weights of the secret key s and ephemeral secret r ,
respectively.

TABLE 2. Best Attack Complexity and Decryption Failure Rate for
Suggested Parameter Set; T denotes the estimated best attack
complexity and DFR denotes the decryption failure rate
for the resulting RLizard.KEM.

The submission includes a reference implementation in C.
However, this version of RLizard does not perform well in
our reference IoT environment. In this work, we improve
the performance of the RLizard implementation such that
it requires much fewer clock cycles. Thus, in the improved
RLizard implementation, we reduce the number of clock
cycles required for key generation, encapsulation, and decap-
sulation by 36%, 42%, and 47%, respectively, compared to
the version submitted to NIST.

We analyze the performance of the improved RLizard
implementation and other KEMs in our reference environ-
ment, i.e., Atmel SAM3X8E ARM Cortex-M3 (84 Mhz,
32-bit) with 96 KB SRAM and 512 KB flash memory.

A. OVERVIEW OF THE BASIC VERSION OF
IMPLEMENTATION
We provide an overview of the basic version of the RLizard
implementation, whichwas submitted toNIST [16].We focus
on three main features that contribute significantly toward the
efficiency of the operations.

1) REPRESENTING THE COEFFICIENTS OF AN
ELEMENT IN RQ (RP )
We use q and p of the form 2u, where u is a positive integer for
making the modular reduction operation efficient. An inter-
esting feature in this regard is that the most significant log2 q
bits in a 16-bit word-sized variable are used to represent a
coefficient of an element Rq, as shown in Fig. 2-(1)-(a). Thus,
we do not need to worry about the mod q operation when
we perform some operations between coefficients. Moreover,
this can be efficiently achieved through b(q/p) · ce to embed
an Rq element c into Rp by following the steps in Fig. 2-(1).

2) REPRESENTING A RING ELEMENT OF SHORT
COEFFICIENTS IN RQ
Another interesting feature of the basic implementation is that
the coefficients of one ring element are ‘‘short’’ (i.e., one of
{-1,0,1}) in every multiplication between two ring elements
in RLizard. Thus, complex operations, such as number

FIGURE 2. Representing the coefficients of an element in Rq (Rp) and
representing a short-coefficient element.

theoretic transformation, are unnecessary in the
implementation.

Furthermore, in the implementation, these short-coefficient
elements are represented with arrays of the degrees of non-
zero coefficients. The degrees of coefficient 1 are stacked
from the beginning of the array, and those of coefficient -1 are
stacked backward from the end of the array. We consider the
smallest index to indicate the degree of coefficient-1, which
is neg_start in Fig. 3.
As random sampling is always performed in RLizard, for

convenience, the way to represent a short-coefficient ring
element is shown by randomly sampling it over the Gaus-
sian distribution, i.e., the probability that zero is sampled is
equal to half of the probability that +1 (or -1) is sampled
(see Fig. 2-(2)).

If we use the representation method described above, mul-
tiplication of a short-coefficient ring element with a normal-
coefficient ring element can be performed in a highly efficient
manner. For example, if we multiply a ring element a =
an−1 ·Xn−1+ ...+a1 ·X+a0 ∈ Rq with another ring element
shown in Fig. 2-(2)-(b), the multiplication can be expressed
as
∑

j∈(b) a ·X
j
=
∑

j∈(b)
∑n−1

i=0 aiX
i+j(mod Xq+1, q) where

(b) refers to the array shown in Fig. 2-(2)-(b).

3) EFFICIENT GAUSSIAN SAMPLING TO GENERATE NOISE
In the key generation phase, an error polynomial e should
be sampled from a discrete Gaussian distribution DGσ for
a certain parameter σ > 0. We follow an efficient discrete
Gaussian samplingmethodology that was originally proposed
in [11]. This method samples errors using the inversion
sampling algorithm, which employs a precomputed look-up
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FIGURE 3. Comparison between the original implementation and the improved one:
multiplication of two ring elements.

table corresponding to a discrete cumulative density func-
tion (CDF) over a small interval containing 0. The distribu-
tion of the output from this algorithm is a discrete bounded
symmetric distribution that is extremely close to the discrete
Gaussian distribution with respect to the Rényi divergence.
Specifically, it is known that if the Rényi divergence between
the desired error distribution and the target discrete Gaussian
distribution is sufficiently close to 1, then exploiting the
desired error distribution instead of the discrete Gaussian
distribution still guarantees the security. For further details
on the relation between cryptographic security and the Rényi
divergence, readers may refer to [50].

B. IMPROVED IMPLEMENTATION
This subsection describes detailed methods for performance
improvement over the basic version of the RLizard imple-
mentation submitted to NIST. We applied various techniques
to the existing implementation in order to improve perfor-
mance. Here, we focus on two methods that facilitated sig-
nificant performance improvement.

According to our investigation, the operation of mul-
tiplying two Rq elements requires a significant part of
the clock cycles consumed to perform the entire RLizard
key encapsulation and decapsulation algorithms. One of
the main advantages of RLizard in terms of efficiency is
that when performing multiplication between two elements,
each element’s coefficients are only one of +1, 0, or −1.
Thus, the multiplication operation can be practically imple-
mented as modular addition between polynomial terms,
which makes the operation extremely fast. However, owing to
the parameter setting in consideration of safety and decryp-
tion success probability, the polynomial order n is 512 for
104-bit security and 1024 for 128-bit security; thus, the num-
ber of non-zero terms h in a multiplicand polynomial is
around 170 for 104-bit security and 128 for 128-bit security.
Such large parameters make the multiplication expensive.

We improved the performance of the multiplication part as
follows. Fig. 3 compares the multiplication implementations
of the original and improved versions. It can be seen that
parts (A) and (B) are improved. Part (A) is implemented as
the ‘‘Original implementation’’ in the NIST version. Since
the polynomial reduction over Xn + 1 is performed simulta-
neously while multiplying X r[j] for every j, it results in many
comparison instructions, as shown in the Fig. 3. By delaying
the polynomial reduction until the final step of the algo-
rithm, we could reduce the comparison instructions by hn
by including n comparisons, 2n additions/subtractions, and
2n memory instructions. This improvement is applied in the
‘‘Improved version’’ in Fig. 3.1 The second improvement is
the reduction in the number of comparisons performed for
the loop in (B). ‘‘Loop unrolling’’ is adopted to reduce the
number of repetitions of the loop controlled by the variable j.
For example, by increasing the size of the code inside the
loop by 2048 bits, the number of comparisons required can
be reduced from hn to hn/64. In addition, we achieved minor
performance improvements by efficiently using randomly
generated bits without wasting them, and by predicting the
number of random bits used for the key generation and encap-
sulation operations in order to minimize the number of calls
of the SHAKE-256 function [49] when generating pseudo-
random bits.
Public key compression:Because every coefficient of poly-

nomial a is sampled uniformly inZq in key generation, we can
just send a 256-bit random seed instead of sending all the
coefficients of a when a user wants to send his/her public
key to another entity. Because we deal with the cryptosys-
tem whose security level is below quantum 128-bit, it is
enough to use 256-bit random seed to generate a random
polynomial a.

1We have found that this idea was originally from [51] and [52] in the
review process.
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FIGURE 4. Comparison of required clock cycles; RLizard104 denotes RLizard with quantum 104-bit security,
and RLizard128 denotes the parameter set in the NIST submission with quantum 128-bit security.

C. PERFORMANCE ANALYSIS IN IOT ENVIRONMENT
We analyzed the performance of RLizard and other existing
KEMs in the IoT environment. Toward this end, we imple-
mented RLizard in the IoT environment. Further, we used the
source code of existing KEMs, obtained from the NIST PQC
standardization web page [16], to implement these KEMs for
performance comparison with RLizard. They were slightly
modified for working in the IoT environment. For exam-
ple, we modified them to invoke the trng_read_output_data()
function when they require true random bits. We used the
Arduino Due [53] to measure the performance. It has an
ARM Cortex-M3 (86 Mhz) MCU with 96 KB SRAM as
working memory and 512 KB flash memory to store the
execution image file. We selected this environment because
it effectively reflects the resource-constrained IoT environ-
ment, such as MCUs without SIMD operations and caches.
Moreover, it is known that 32-bit ARM processors are the
most widely used embedded processors inmany high-end IoT
platforms [34].

We measured the average clock cycles required for
key generation, encapsulation, and decapsulation operations.
We ran each scheme 10000 times and measured the average
clock cycles. We also analyzed their storage requirements.
We considered the maximum working memory required,
the size of the executable image files, and the sizes of the
public key, private key, and ciphertext.

The existing KEMs that were compared with RLizard are
listed in Table 3. We focused on those KEMs that were
proposed recently or presented at major security conferences.
To make them run with reasonable speed in the IoT Envi-
ronment, we chose their light-weight versions and corre-
sponding security parameters, which are sufficient for IoT
devices because their security level is comparable with that of
AES-128 [16], which is one of the NIST standard settings that
is widely used in practice. The quantum security supported by
the chosen parameter settings is also stated in Table 3.

Fig. 4 shows the clock cycles required for each operation
on RLizard and the schemes listed in Table 3. The x-axis

TABLE 3. KEM schemes and their quantum security settings.

of the upper graph is of log scale. We can see that RLizard
with the 104-bit security setting requires the fewest clock
cycles for all operations. In particular, for key encapsulation
(decapsulation), RLizard with the 104-bit security setting
requires 40.6% (3.79%) fewer clock cycles than the second-
fastest scheme, namely Kyber [10].

Table 4 summarizes the required storage space for various
KEM schemes including RLizard. Compared to the other
schemes, RLizard uses a relatively large amount of storage
space, except in the case of the private key size. In particular,
it can be seen that the space required for the execution image
file is nearly twice as large as that required in the case of
other KEM schemes, such as NewHope, Frodo, and Saber.
This is because the proposed scheme uses loop unrolling,
which increases the code size. However, as the size of the
flash memory in which these images is stored is larger than
that of the SRAM in conventional IoT environments, the dis-
advantage due to the use of such storage space is not as severe
as that due to high SRAM consumption. Further, we could
not exactly measure the maximum use of SRAM in the case
of Frodo [11] because it consumes all the SRAM memory
when executing the test program; except for the amount of
memory used by the test program, the size of the SRAM
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TABLE 4. Comparison of the required storage size (in bytes); RLizard104 denotes RLizard with quantum 104-bit security, and RLizard128 denotes the
parameter set in the NIST submission with quantum 128-bit security.

TABLE 5. Power consumption ratio of other schemes compared to
RLizard-104.

available is 85879 bytes. As the stack region and the heap
region are overlapped while running the test program with
Frodo, we could not measure the exact size of the memory
required.
Power consumption analysis: The amount of power con-

sumed is one of the most important factors to discuss the
efficiency of the methods used in the IoT environment.

We compare the power consumption of the proposed
method and other methods relatively. Based on the results
of the research [54], we assume that the amount of power
required for executing 1 clock cycle by CPU is equal to
1/1000 of the power for 1 bit data transmission.

Under this assumption, we compare power consumption of
the proposed method with those of other methods. The data
transmitted in one KEM execution are a public key and its
related parameters, and a ciphertext. In addition, since the key
generation algorithm is performed only once in the entire life
time of devices, it is assumed that only the key encapsulation
and the key decapsulation algorithm are performed when a
KEM is executed once. Based on this assumption, we cal-
culate the number of clock cycles required for one KEM
execution. The bit length of the parameters are estimated by
analyzing the shortest bit lengths with which each parameter
can be expressed in each method.

Considering all of them, we provide the results of analyz-
ing the required amount of power for other methods when the

TABLE 6. Ratio of the required number of clock cycles of
RLizard-104 algorithms in ARC embedded processor (32MHz)
environment compared to those in ARM COrtex-M3 (84Mhz)
environment.

amount of power required to perform the KEM once using
the proposed method is 1, in the following Table 5. From the
result of the analysis of the power amount, we can say that
the power consumption of the proposed method is the lowest.
Performance in a different CPU environment: we imple-

mented RLizard-104 in the ARC embedded processor
(32MHz), 24KB SRAM, 192KB Flash memory environment
to verify the performance of RLizard-104. The result of
measuring the performance of each algorithm is shown in
the following Table 6. The result shows that the number of
clock cycles used is 2.3%∼ 5.8% less than in the Cortex-M3
(84MHz) environment.

VI. CONCLUSION
In this paper, we proposed RLizard as a pq-KEM that can
be used in the IoT environment. The security of the proposed
KEMdepends on the RLWE/RLWRproblems; hence, the key
generation time and the space required for key management
are reduced compared to the existing Lizard scheme. Further,
we proposed an improved implementation compared to the
version submitted for pq-KEM standardization. As a result of
the improvement, we confirmed that, in the parameter setting
with AES-128-level security, RLizard consumes the fewest
clock cycles in the 32-bit ARM environment compared to
other KEM schemes that have been submitted for pq-KEM
standardization. Our experiments showed that RLizard is well
suited for the IoT environment, which has strict requirements
in terms of computational resources but relatively relaxed
requirements in terms of the supported storage space. In addi-
tion, the performance analysis of RLizard and other pq-KEMs
in the same environment is expected to provide important
reference data for future improvement of the implementation
performance of pq-KEMs.
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