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A micro-scale flying insect has a unique wing configuration consisting of a central frame and several
bristles. For the low-Reynolds-number regime in which the insect lives, the bristled wing utilizes a
virtual fluid barrier inside gaps produced by strong viscous diffusion of shear layers to overcome its
morphological limitations. Considering the unsteady flapping motion of such a wing, the aerodynamic
characteristics of gap flow formation are investigated numerically using a two-dimensional bristled
wing model for a wide range of Reynolds numbers. Inside a gap between bristles, the development of
a stopping vortex during the deceleration phase and its effect on the extinction of an existing vortex
generated at the same edge are dependent on the Reynolds number, which leads to a significant change
in vorticity distribution at stroke reversal even with just a small change in the Reynolds number. As the
Reynolds number decreases, the gap flow responds more rapidly to wing motion, and its pattern does
not deviate significantly from the kinematics of the wing. A noticeable difference is also observed
in the behavior of the aerodynamic force acting on each bristle at low and high Reynolds numbers.
With regard to aerodynamic force generation by the bristles, each bristle behaves independently and
produces similar force because of strong gap flows relative to the wing at high Reynolds numbers.
Meanwhile, at low Reynolds numbers, each bristle experiences a different force depending on its
relative position, which indicates the existence of collective interaction of bristles through a virtual
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fluid barrier. Published by AIP Publishing. https://doi.org/10.1063/1.5030693

I. INTRODUCTION

Flying insects are able to achieve surprisingly high propul-
sive performance by generating unsteady flow structures, and
it has been suggested that a similar approach be adopted to sig-
nificantly improve the aerodynamic capabilities of micro air
vehicles. However, understanding the principles of unsteady
propulsion mechanisms remains a challenging task, although
the mechanisms of lift augmentation during unsteady motion
have been extensively studied by many research groups.'~
Although numerous studies to uncover the aerodynamics of
unsteady wings have been conducted, most of these have been
based on typical wing shapes with a continuous surface. The
wings of a fairyfly (the smallest known flying insects) and a
thrips, in contrast to those of most insects, have a very distinct
configuration: the so-called comb-like or bristled wings.*> As
can be seen in the figures in the work of Huber and Noyes,’
a bristled wing consists of a single main frame at the center,
from which several bristles extend in all directions, with gaps
between them.

In nature, this morphological characteristic of a propul-
sor with gaps is not limited to small flying insects such as a
fairyfly and a thrips. Some other small organisms control leak-
age through gaps by changing the size and speed of the gaps,
i.e., by changing the Reynolds number. If the Reynolds number
is small enough, strong viscous diffusion causes a thick shear
layer to develop along the surface of the gap and eventually
overlap the latter. Leakage through the gap is thereby drasti-
cally reduced. This phenomenon has been revealed by previous
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studies on propulsive lappets of a juvenile jellyfish®’ and on
hairy organs for food detection® and olfactory sensing.”!°

A fairyfly and a thrips, which live in the low-Reynolds-
number regime [Re = O(10)], also utilize a virtual fluid barrier
formed in the gaps of their wings as a result of overlapping
thick shear layers, so they are able to fly with the peculiar
geometry of a bristled wing. Sunada ez al.!' conducted a pio-
neering study on a translating or rotating bristled wing model,
in which a bristled wing in the low-Reynolds-number regime
[Re = O(10)] was found to generate a comparable, but slightly
smaller, aerodynamic force to that generated by a smooth wing.
They obtained high lift and drag coefficients of the bristled
wing because the reduction in wing area is greater than the
reduction in lift and drag forces. A theoretical analysis of a
creeping flow around a row of slender bodies showed that
more than 95% of the flow detours around the row, instead
of passing through the gaps.'> Weihs and Barta'® studied fluid
leakage and aerodynamic force generation in each bristle along
the spanwise direction of a flapping bristled wing, for which
the flapping velocity increases linearly from the root of the
wing to its tip in the Stokes flow regime. Davidi and Weihs'#
presented the velocity distribution between gaps for several
Reynolds numbers and obtained the limits on the Reynolds
number at which the performance of a bristled wing is com-
parable to that of a smooth wing. Recently, Lee and Kim'
investigated flow structures in both initial transient and quasi-
steady phases of a translating three-dimensional comb wing
for wide ranges of gap size, angle of attack, and the Reynolds
number.

Past studies on bristled wings have considered mainly
simple kinematics such as translation with constant velocity.

Published by AIP Publishing.
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Although these studies on steady wing motions have been
important in revealing the fundamental aerodynamic mech-
anisms of bristled wings, the actual unsteady characteristics
of insect wing motions need to be taken into consideration for
a better understanding of the complicated flight of insects.'®
Santhanakrishnan et al.'” and Jones et al.'® studied an unsteady
lift generation mechanism of bristled wings, namely, clap and
fling, by considering the actual kinematics of such wings and
claimed that airflow through the wing surfaces reduces the
drag required to fling them apart and thus increases the average
lift-to-drag ratio during a flapping cycle.

In spite of emerging interest in the aerodynamics of
bristled wings, however, previous studies on unsteady wing
motions have been confined to finding correlations between
propulsive performance and wing configuration, rather than
describing the development of gap flow, which is critical for
determining the overall flow structure and its effect on aero-
dynamic performance. The formation of gap flow is expected
to be more important in a flapping bristled wing because the
wing continues to reciprocate within a short distance and an
unsteady flow structure repeats to generate per each stroke.
Nevertheless, little information is available on the formation
of gap flow in a bristled wing under periodic flapping motion,
although gap flow formation after the onset of motion has been
investigated for a translating bristled wing.!> In the present
study, the unsteady formation of gap flow in a bristled wing
and its aerodynamic characteristics are numerically investi-
gated for a wide range of Reynolds numbers between 1 and
100. We consider both an oscillating bristled wing with a con-
stant angle of attack and a flapping bristled wing combined
with a pitching motion. First, for the simple oscillating bristled
wing, we examine the development of gap flow, the behavior
of fluid particles around the wing, the force acting on each
bristle, and finally the effect of the Reynolds number on the
formation of gap flow. Then, we expand our analysis to the case
of a flapping wing by adding pitching motion to the oscillating
motion.

Il. PROBLEM DESCRIPTION
A. Wing model

In a bristled wing, bristles near the mid-span of the
wing extend in the chordwise direction, whereas bristles near
the wing tip extend in the spanwise direction;* also see
Figs. 1(a) and 1(b) for Frankliniella occidentalis, a species
of thrips. As in the study of Jones et al.,'® here we intro-
duce a simplified two-dimensional bristled wing which cap-
tures the characteristic of the actual bristled wing. Our model
consists of five equally spaced bristles, and the width of
the gaps between bristles is equal to the width of a bristle
Figs. 1(c) and 1(d). This width is taken as %c, where c is the
total chord length of the wing (¢ = 1 in our computational
model). The thickness of the wing is 10% of the chord length,
which is sufficiently small that the effect of thickness can be
neglected.

Two representative motions are considered separately:
translational oscillation without rotation [oscillating: Fig. 1(c)]
and a combination of translational oscillation and periodic
pitching motion [flapping: Fig. 1(d)]. For the oscillating
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FIG. 1. [(a) and (b)] Micrographs of (a) Frankliniella occidentalis, a species
of thrips, and (b) its wing. [(c) and (d)] A simplified two-dimensional bristled
wing model (red) inspired by the biological bristled wing. The wing model has
five bristles equally spaced. The motions of the wings are illustrated at several
instances for (c) oscillating motion and (d) flapping motion. In (d), only a
half-cycle is depicted for the motion from left to right. The actual thickness
of the wing model is much smaller than it appears in this figure.

motion, the kinematics are as follows:
x(t) = xo sin(2xf?), (1)

where xg and f are the amplitude and frequency of oscillation,
respectively, where xo = 1.5 and f = % The angle of attack 6
with respect to the horizontal axis is fixed as 90° [Fig. 1(c)].
For the flapping motion, the rotational motion of the wing is
added and is prescribed as

6(t) = 90° — 6y sinxft + n/2), 2)

where 6y = 45° is the amplitude of rotation [Fig. 1(d)]. The
pitching axis is located at the middle of the chord.

The aim of this study is to investigate the dynamics of
shear layers inside the gaps and their effects on force gen-
eration of each bristle, rather than exploring the effects of
variations in geometric and kinematic parameters or the biome-
chanics of an insect wing. For this reason, we consider only a
single model as shown in Fig. 1 for the geometry and Egs. (1)
and (2) for the kinematics. In the present study, the data of one
cycle will be analyzed after an initial transient phase of about
four to five cycles.

The Reynolds number based on the chord length and
flapping speed of a biological bristled wing is known to be
about 10; the bristle-diameter-based Reynolds number is near
0(1072).1718 To examine the effect of viscosity, the range of
Reynolds numbers Re = Uc/v in this study is between 1 and
100 (Re =1, 3, 10, 30, and 100), including the Reynolds num-
ber relevant to actual bristled wings (Re ~ 10). U = 4xf is
the mean flapping speed, v is the kinematic viscosity of the
fluid, and c is the chord length. The flow around the wing is
assumed to remain two-dimensional in the Reynolds number
range of this study.!® As characteristic length scale in the def-
inition of the Reynolds number, the gap size between bristles
or the width of a bristle can be used as well. However, the
chord length ¢ was chosen for the Reynolds number defini-
tion because it has been used conventionally in aerodynamics
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community, including our previous study.'> The Reynolds
number based on the gap width can be computed easily
by dividing the Reynolds number given in this study by
9: gap width = chord/9. x- and y-directional force coefficients
are defined as

26:(0) and Cy(t):ziy). 3)

pU ¢

B. Numerical method

For numerical simulation of a thin object moving in two-
dimensional incompressible laminar flow, an in-house code
was developed, which is based on the sharp-interface hybrid
Cartesian/immersed boundary (HCIB) method.?® Here, we
simply summarize our approach. For the complete solution
procedure of the HCIB method including a ray-tracing algo-
rithm for the identification of an immersed body, see the studies
of Gilmanov and Sotiropoulos,”’ Ge and Sotiropoulos,>' and
Borazjani, Ge, and Sotiropoulos.”? The discretization of the
governing equations is based on a finite difference method in
Cartesian coordinates with a three-time-level second-order dif-
ference scheme for time, a second-order linear upwind scheme
for convective terms, and a standard central difference scheme
for diffusive terms. Both linear diffusive terms and nonlin-
ear convective terms are treated implicitly. However, owing
to the nonlinear treatment of convective terms, the system of
equations is nonlinear and is solved using Newton’s method in
combination with the matrix-free generalized minimal resid-
ual method (GMRES).?*?* The fractional step method of Van
Kan? is employed for pressure—velocity coupling on a collo-
cated grid layout. A collocated grid arrangement is preferred
to a staggered grid arrangement in order to avoid the compli-
cations that would arise with the latter due to the enforcement
of boundary conditions on an immersed object. However, the
collocated layout can lead to a so-called checker-board situ-
ation. To avoid this problem, as proposed by Gilmanov and
Sotiropoulos,”’ the momentum equations are discretized on
collocated grids, and the discretized equations are interpolated
to cell faces via a third-order one-dimensional QUICK inter-
polation, while velocities are updated on cell faces instead of
cell centers.

In our simulations, a rectangular fluid domain of total
domain size [—49c¢, 49¢] x [-21c, 21c] is constructed. The
origin of this fluid domain is identical to the location of
the pitching axis in mid-stroke. The fluid domain consists of
two regions: uniform square grids near the wing ([-2c¢, 2c]
X [-1¢, 1c]) with a spacing dx = dy = 0.0075¢ and nonuniform
rectangular grids with exponentially increasing size outside
the uniform grid region. The total number of grids is Ny X N
=775 % 507. The time step is determined by a criterion based on
the Courant—Friedrichs—Lewy (CFL) number, which restricts a
Lagrangian point on the wing to passing through less than one
grid of the fluid domain in each time step. In our simulation,
4000 time steps are used for a single cycle.

To check grid convergence, we varied the grid spacing
around the wing from dx = dy = 0.0075c¢ to dx = dy = 0.01c
for the same domain size at Re = 10 and compared the average
x- and y-directional force coefficients of a flapping bristled
wing for one cycle. Here, the average x- and y-directional
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FIG. 2. Time histories of total drag (red), drag by pressure (orange), and drag
by viscous stress (green) for an oscillating circular cylinder during two cycles:
solid line (present work) and dashed line (Ref. 1). Re = 100 and KC = 5.

force coefficients are defined as C, = fOT |Cx(®)| dt/T and
Fy = fOT Cy()dt/T, respectively. Ey and C, of a flapping bris-
tled wing during one cycle were, respectively, 3.77 and 1.11 for
the coarse-grid case (0.01c) and 3.97 and 1.09 for the fine-grid
case (0.0075¢). The difference between the two cases is just
within 5%, which is small enough to confirm that our results
are reliable.

C. Code validation

To validate our in-house immersed boundary method
(IBM) code, we conducted two sets of tests. Note that the
definition of some parameters in this section may differ from
the definition of some parameters in Secs. II A and II B.
First, for the problem including a moving object, we com-
pared our results for a harmonically oscillating circular cylin-
der with diameter d to those of Diitsch et al.?® Non-uniform
grids with minimum spacing 0.01d near the cylinder are con-
structed for a rectangular fluid domain of [-20d, 20d] X [-15d,
15d]. The total number of grids is N, X N, = 584 x 472.
In this validation test, translational motion x(¢) is given as
x(t) = Asin(2xft), where A and f, respectively, denote the
amplitude and frequency of the cylinder motion. The Reynolds
number Re = Uy, d/v and the Keulegan-Carpenter number
KC = U,axlfd are 100 and 5, respectively, where U,y is
the maximum speed of the cylinder. The drag coefficient Cy4
defined as C;(t) = 2F,(t)/ pU,%mxd is compared with that of
Diitsch e al.?° in Fig. 2; in addition to the total drag, the drag
by pressure and the drag by viscous stress are also compared.

Next, to validate our code in the Reynolds number much
lower than 100, a stationary circular cylinder with diameter d
in uniform free stream is considered. Non-uniform grids with
minimum spacing 0.01d near the cylinder are constructed for a
fluid domain of 1004 in both x and y directions. The cylinder is
located in the middle of the domain. The total number of grids
is Ny x Ny = 394 x 394. The drag coefficient of a cylinder
(Cq4 = 2F /pU?d) at Re(=Ud/v) = 1 is compared with other
references in Table I. Figure 2 and Table I ensure that the results

TABLE I. Comparison of the drag coefficient for a circular cylinder in
uniform free stream at Re = 1.

7

Present work  Tritton? Hamielec and Raal*®  Sheard ef al.?*

Re=1 11.3 10.9 11.0 11.7
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of our in-house code are reliable in the Reynolds number range
considered in our work.

lll. RESULTS AND DISCUSSION
A. Oscillating bristled wing

We first investigate an oscillating bristled wing [Fig. 1(c)].
It is well known that, at a low Reynolds number [Re = O(10)],
a gap in a bristled wing is blocked aerodynamically by vis-
cous diffusion of two shear layers generated by the two edges
of the gap, which is why a bristled wing has superior per-
formance to a wing with a solid surface in terms of lift per
unit actual wing surface area.''~!'> However, the velocity of
the fluid in the gap does not coincide exactly with that of the
wing surface in the low-Reynolds-number regime. For exam-
ple, for a bristled wing at alow Reynolds number [Re = O(10)],
the flow velocity in a gap clogged by shear layers reaches
about 80% of the wing velocity in the quasi-steady phase of
translational motion.!*!> For a translating bristled wing, as
the gap size becomes smaller, the gap flow responds more
rapidly to the wing kinematics; i.e., the flow velocity in the gap
becomes close to the wing velocity in a shorter time because
it requires less time for the shear layers to form a virtual fluid
barrier.!> Obviously, the flow velocity in the gaps of a bristled
wing undergoing horizontally reciprocating motion [Fig. 1(c)],
or under any unsteady kinematics, does not remain constant
because of the repeated formation and extinction of the shear
layers in each stroke. Lee and Kim'"> addressed the initial
development of gap flow for the starting phase of a steady trans-
lation. However, in an oscillating bristled wing, it is important
to understand how the acceleration and deceleration of the
oscillating wing affect the development of gap flow and shear
layers.

Since, at Re = 10, the flow field of an oscillating wing
is symmetric with respect to the middle of the chord,’® we
present only the upper half of the wing in Fig. 3(a) (Multi-
media view). In our study, no noticeable asymmetry between
the upper and lower halves of the wing is found at Re = 10.
Meanwhile, at a relatively large Reynolds number (e.g., at
Re = 100 in our study), we observe symmetry breaking of
the flow structure, although, for simplicity, we present only
the upper half of the wing for Re = 100 in Fig. 3(a) (Mul-
timedia view). The schematics of vortex formation near the
first and second bristles from the top of the wing are shown in
Fig. 3(b), where the red and blue circles indicate the direction
and magnitude of the vortex, respectively.

The dimensionless vortex circulation, defined as
I'* = [ wdA/Uc, is obtained for the vortices generated by the
outermost edge of the wing (outer-edge vortex) and the inner
edge of the gap (gap vortex). To include desired vorticity for
the circulation, time-varying integration area A is set as [2c,
x(t) + 0.5¢] x [0.44c, 1c] for the outer-edge vortex and [-2c,
x() + 0.5¢] x [0.33¢, 0.44c] for the gap vortex [Fig. 4(c)].
x(#) is the instantaneous position of the wing, and y = 0.44c
corresponds to the overlapped line of solid and dashed areas
in Fig. 4(c), where the center of the first bristle is located.
For the right end of the integration area, 0.5¢ in front of the
wing is additionally considered to include vorticity diffused
in front of the wing which is noticeable at low Re. With the
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FIG. 3. (a) Vortex structure around an oscillating bristled wing at Re = 100
and 10. In (a), only the upper half of the wing is presented. (b) Schematics
of the vortex structure corresponding to (a). The arrows indicate the rotating
direction of the vortex. The black lines represent the bristles of the wing.
Note that the thickness of the bristles is magnified from their actual thickness.
Multimedia view: https://doi.org/10.1063/1.5030693.1

integration area chosen carefully by examining vorticity con-
tours, we were able to exclude vorticity generated by the
previous stroke or the other segments of the wing. To avoid
including noise, the threshold values of the dimensionless vor-
ticity we/U were chosen as 0.5 for the outer-edge vortex and
—0.5 for the gap vortex. The time histories of circulation com-
puted with several vorticity thresholds, lwe/U| =0 - 3.0, are
presented in the Appendix (Fig. 13). In Fig. 13, the deviation
in the circulation of the outer-edge vortex is pronounced as the
threshold becomes larger than 1.0, while the circulation of the

(@) Re=100 (b) Re=10
4.0 4.0
3.0 3.0
£ 2.0 % 2.0
I 1.0 I 1.0
0 :';";":””"""_”:’:'; Q prrmr e s e e e s o
19701 02 03 04 05 % 01 02 03 04 05
t* t*
(©
]y
| X
1
A m - ---- a
x,=-2c I x =x()+0.5¢c

Wing == Moving direction
FIG. 4. [(a) and (b)] Time history of nondimensional circulation I'*(= T'/Uc¢)
for (a) Re = 100 and (b) Re = 10. The solid and dashed curves represent
the circulations obtained inside solid and dashed areas, respectively, depicted
in (c). The red and blue colors indicate positive and negative circulations,
respectively. (c) Integration areas for circulation. The right ends of the areas
extend (x, = x(¢) + 0.5¢) as the wing translates to the right, while the left ends
are fixed (x; = —2c).
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gap vortex remains nearly unaffected by the threshold value.
Hence, we chose the threshold of |a)c/ﬁ| = 0.5 which shows
the trend similar to the case of |wc/U| = 0.

In Fig. 3 (Multimedia view), for Re = 100, a strong
negative-vorticity region is observed inside the gap at t*(=¢/T)
= 0.25, which corresponds to the mid-stroke of maximum
velocity, and the gap vortex is elongated to the leeward of
the wing. See also Fig. 4(a) for the strength of the negative-
vorticity region: II'*l = 0.70 at * = 0.25. At this moment, the
circulation of the positive-vorticity region of the solid area near
the outermost edge IT™*| is 3.71. Meanwhile, for Re = 10, the
negative vorticity of the dashed area is confined near the gap
instead of extending to the leeward of the wing, because, at a
low Reynolds number, two counter-rotating gap vortices that
have developed at the two edges of the gap cancel each other
quickly owing to rapid diffusion of vorticity.®!> As a result,
the strength of the negative gap vorticity (II'*l = 0.09) is less
than 3% of the strength of the positive outer-edge vorticity
(I =3.67)att* =0.25 [Fig. 4(b)].

As a wing decelerates suddenly or stops, the fluid that
moves behind the wing starts to turn forward around the wing
and evolve a vortex of opposite sign, which is called a stopping
vortex. In general, the generation of the stopping vortex and its
interaction with the existing vortex is important in determining
the overall propulsive performance of a flapping propulsor.®!
A stopping vortex is also found at the gap and at the outer
edge of a decelerating bristled wing. As the wing decelerates
after t* = 0.25, vorticity is generated at the edges, with oppo-
site sign to the vorticity formed during the accelerating phase
(0 < * < 0.25), and eventually annihilates the latter Figs. 3(a)
and 3(b) (Multimedia view). In the acceleration phase fol-
lowing the stroke reversal (#* = 0.50-0.75), the new vortex
structure that started to form during the deceleration phase
becomes more prominent.

At the lower Reynolds number (Re = 10), because of
stronger viscous diffusion, gap vorticity is small at mid-stroke,
which is followed by rapid diffusion of the stopping vortex dur-
ing deceleration. Thus, the extinction of the original gap vortex
formed during the accelerating phase occurs shortly after the
beginning of deceleration at a lower Reynolds number. That is
to say, the Reynolds number determines the extinction of the
existing gap vortex and the generation of the new gap vortex
of opposite sign. For instance, at t* = 0.40, for Re = 100, the
strong gap vortex of negative vorticity that has grown during
the acceleration phase is still observed; its circulation IT"*| is
0.38. Meanwhile, for Re = 10, the gap vortex almost disap-
pears, II'*l = 0.03 (Fig. 4). For Re = 100, the moment when
the sign of the gap vortex or the outer-edge vortex changes is
between ¢* = 0.45 and 0.50, which is delayed compared to the
Re = 10 case (#* = 0.40-0.45). Regardless of the Reynolds
number, the process of stopping-vortex formation and resul-
tant annihilation of the existing vortex occurs before the wing
reaches the end of its stroke (t* = 0.50).

For Re = 100, stopping vortices emerge both at the gap
and at the outermost edge near ¢* = 0.45, and their cores are
clearly observed at t* = 0.50, where both have the vorticity dis-
tribution of similar magnitude Figs. 3(a) and 3(b) (Multimedia
view). Meanwhile, for Re = 10, the outer-edge vortex that has
grown during acceleration still remains noticeable at t* = 0.40
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with its circulation IT*| of 3.24, while the gap vortex almost
disappears. The rapid diffusion of vorticity inside the gap leads
to its annihilation with the counter-rotating vortex generated
by the other edge of the gap. However, the outer-edge vor-
tex is not bounded by an edge and annihilation of vorticity
does not happen, which helps us to maintain large circulation
Figs. 3(a) and 3(b) (Multimedia view). For the same reason,
during #* = 0.45-0.75, the negative circulation of the outer-
edge vortex which is not bounded by another edge increases
earlier and more rapidly than the positive circulation of the gap
vortex.

In addition to vortex strength, the temporal velocity pro-
file inside the gap is also dependent on the Reynolds number
(Fig. 5). Note that in Fig. 5, the red and blue arrows for a rep-
resentative gap flow are drawn in a reference frame fixed to
the wing. For a high Reynolds number (Re = 100), since there
is little blocking effect by the shear layer, the minimum u;| /ﬁ
is —2.4 at mid-stroke [Fig. 5(b)]. The large inertia of the high-
speed gap flow moving to the left during the acceleration phase
slows the response of the gap flow to the wing kinematics dur-
ing the deceleration phase. Thus, a negative x-directional flow
with minimum u,/U = —1.1 is still observed at ¢* = 0.40.
On the other hand, when the Reynolds number is low
(Re = 10), because of the short time scale of diffusive momen-
tum transfer and the small inertia of the relative gap flow, the
gap flow becomes more agile in its response to the wing kine-
matics. The minimum ¢ /ﬁ at Re = 10 is —0.7 at mid-stroke,
the magnitude of which is much smaller than that at Re = 100
[Fig. 5(c)]. Furthermore, there is nearly zero net flow through
the gap at " = 0.40: uy /ﬁ ~ 0. The greatest difference in the
gap flow pattern between the two Reynolds number regimes is
observed at t* ~ 0.40, when the flow is in different directions
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FIG. 5. (a) Schematics of the flow direction with respect to the wing during
the deceleration and acceleration phases. The hollow arrows represent the
absolute velocity of the wing. The red and blue arrows indicate the direction
and magnitude of the gap flow, which are presented with respect to a reference
frame fixed to the wing. The lengths of the arrows in the figure represent their
approximate magnitude. Only the upper half of the wing is presented. The
x-velocity distribution relative to the wing (i) within the uppermost gap of
the wing for (b) Re = 100 and (c) Re = 10. u, is normalized by the mean
oscillating speed U.In (b) and (c), * = 0.25 (red), 0.40 (orange), 0.50 (green),
and 0.75 (blue).
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in the two regimes. In the low-Reynolds-number regime, the
reversed gap flow [blue arrows in Fig. 5(a)] after #* = 0.40 also
remains relatively small, owing to the rapid diffusion of the
shear layer.

We have examined the pattern of gap flow with a special
focus on its direction and magnitude during the deceleration
phase and have revealed its dependence on the Reynolds num-
ber. However, an Eulerian description with vorticity and veloc-
ity distributions at several times may not be enough to fully
understand the development of the gap flow under unsteady
wing kinematics. Here, we consider the trajectory of fluid par-
ticles in order to demonstrate how drastically the gap flow
pattern changes near stroke reversal as the Reynolds number
varies between 10 and 100 (Fig. 6). In Fig. 6, fluid tracers (fluid
particles) are arranged in the left (blue) and right (red) sides
of the wing at #* = 0.25. At Re = 100, red particles deeply pen-
etrate the wing through the gaps. The maximum penetration
depth is about 0.8¢ at t* = 0.40, which is almost two-thirds of
the displacement of the wing from #* = 0.25 to t* = 0.40. As
the direction of the gap flow relative to the wing is reversed at
0.40 < t* < 0.50 (Fig. 5), penetrated red particles are pulled
back toward the wing. While the wing moves from end-stroke
(t* = 0.50) to mid-stroke (r* = 0.75) after stroke reversal, a
significant number of red particles pass through the gaps to
the right side of the wing because of the large inertia that they
acquired in the previous stoke.

However, at a low Reynolds number (Re = 10), interest-
ingly, most of the blue fluid particles behind the wing follow
the wing from ¢* = 0.25 to 0.40. Most of the red fluid parti-
cles in front of the wing turn around the wing, whereas only a
small portion penetrate through the gaps. At#* =0.40, although
the wing translates about 1.2¢ from mid-stroke, the red parti-
cles penetrate only about 0.2¢, whereas they penetrate 0.8¢ at
Re = 100 for the same time span. From ¢* = 0.40 to 0.50,
the red particles tend to move through the gaps in the reverse
direction, from left to right with respect to the wing. There-
fore, at the end of the stroke (#* = 0.50), just as at mid-stroke,
most of the blue and red particles are positioned on the left
and right sides of the wing, respectively. As the wing moves
to the left after stroke reversal, blue particles leak through
the gaps to the right side of the wing because of their inertia.
At stroke reversal, the shear layer is not sufficiently devel-
oped to prevent penetration of the blue particles to the right

Re =100

Re=10

*=0.25

t*=0.40 t*=0.50 t*=0.75

FIG. 6. Movement of fluid particles initially aligned around the wing at
t* = 0.25. The hollow arrows represent the absolute velocity of the wing,
as in Fig. 5. In this figure, the thickness of the bristles is magnified from their
actual thickness.
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side. Although not studied here, in the case of creeping flow
(Re < 1), we expect the penetration of fluid particles to be
hardly observable and the bristled wing to exhibit a clearer
paddle-like behavior.®!%32

As mentioned above, only two Reynolds numbers
(Re = 10 and 100) have been considered in order to present
a clear description of how viscous diffusion of vorticity and
momentum affects the pattern of gap flow during the decel-
eration phase and stroke reversal. We have revealed that the
gap flow pattern varies drastically when the Reynolds number
changes by just one order of magnitude from 0(10%) to 0(10).
In the range from Re =1 to 100, the effect of the Reynolds num-
ber on the velocity of the gap flow is shown in Fig. 7(a). An
average x-directional velocity 7 within the gaps was obtained
by averaging absolute velocities of all nodes on a vertical line
inside the four gaps. For Re < 10, the time history of & inside
the gaps does not deviate significantly from the velocity pro-
file of the wing and preserves a sinusoidal shape [Fig. 7(a)].
The positive peak of & occurs at t* = 0.26 for Re = 1 and at
t* = 0.30 for Re = 10 [Fig. 7(c)]. However, as the Reynolds
number increases above 10, the phase of i is delayed drasti-
cally with respect to the wing velocity; the time of the positive
peak of # increases monotonically with increasing Reynolds
number [Fig. 7(c)]. For a high Reynolds number, since the for-
mation of a virtual barrier inside the gap is delayed or does
not occur, the gap flow cannot keep up with the kinematics of
the wing. See the difference between Re = 10 and Re = 100 at
t* =0.40 in Figs. 5(a) and 5(c). For Re = 100, the positive peak
of il is even at t* = 0.68, after stroke reversal. As Re increases
from 1, in addition to the phase shift, the peak magnitude of
the x-velocity gradually becomes smaller because of increased
fluid leakage through the gap [Fig. 7(a)]. For example, the max-
imum of &1/ U falls from 1.44 at Re = 1 to 0.84 at Re = 30 and
to 0.54 at Re = 100. Although Barta®” reported the lag of flow
in oscillating slender bodies in creeping flow, it becomes more
pronounced as the order of the Reynolds number is greater
than 1 Figs. 7(a) and 7(c).
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FIG. 7. (a) x-directional velocity # averaged for the entire four gaps in the
wing during one cycle, and normalized by the mean speed of oscillation U. (b)
X-directional force acting on the entire wing during one cycle. In (a) and (b),
Re =1 (red), 3 (orange), 10 (green), 30 (blue), and 100 (purple). Phases of the
positive peaks for x-directional velocity (c) and x-directional force coefficient
(d) as functions of the Reynolds number.
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On the other hand, in contrast to the gap flow veloc-
ity i, the time history of the x-directional force coefficient
C, remains sinusoidal for all Reynolds numbers Figs. 7(b)
and 7(d). Although the magnitude of the positive peak of C,
decreases with increasing Reynolds number, the phase of its
positive peak is almost constant (1 = 0.67-0.70), despite the
change in the Reynolds number. That is, the phase of virtual
barrier formation does not directly affect the phase of force
generation, but rather the magnitude of force.

B. Aerodynamic force on individual bristles

For abristled wing, if viscous diffusion is strong enough to
allow the interaction between close bristles, the aerodynamic
force exerted on each bristle depends on its relative position.
Figure 8 shows how the forces in the x- and y-directions act-
ing on each bristle change with the Reynolds number for the
oscillating motion. To obtain the force coefficients C, and C,
for a single bristle, the total chord length ¢ is used in their
definitions in Eq. (3), instead of the width of a bristle. For
Re = 100, with regard to the magnitude and phase of C,,
no regular order of bristles is observed during a cycle, and
each bristle seems to behave independently [Fig. 8(a)]. The
viscous shear layer inside the gap is so thin that it does not
affect a neighboring bristle. The bristled configuration can
be regarded as the collection of independent small segments
arranged side-by-side.

Meanwhile, for Re = 10, the absolute magnitude of C,
acting on the two outer bristles (red and black in Fig. 8) is
slightly greater than that for the two inner bristles (orange and
blue); the absolute maximum value of C, is 2.22 at the outer
bristles and 2.08 at the inner bristles [Fig. 8(c)]. Each inner
bristle moves in the flow field induced by adjacent bristles,
while each of the outer bristles is confined by only one nearby
bristle, which results in the discrepancy in C,.%!>!* Further-
more, differences are observed in the phase of the force peak,
as well as in its magnitude. The positive peak of C, for the
inner bristles is slightly ahead, by about 7/100, of the two
outer bristles. During the deceleration phase, the extinction
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FIG. 8. x- and y-directional force coefficients for each of five bristles during
one cycle: [(a) and (b)] Re = 100 and [(c) and (d)] Re = 10. Note the different
ranges of C, and Cy on the vertical axes. The colors of the curves correspond
to the colors of the bristles shown on the right side of the figure (e.g., red for
the uppermost bristle and black for the lowermost bristle).
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of the outer-edge vortices of the wing is slightly slower than
that of the gap vortices, as depicted in Fig. 3 (Multimedia
view), which may lead to the minor difference in the peak
phase.

A noticeable difference between Re = 100 and Re = 10 is
foundin C, rather thanin C, Figs. 8(b) and 8(d). Because of the
thin geometry, the y-directional force C, is mostly caused by
the viscous force acting on the bristle rather than the pressure
force. For Re = 100, no significant y-directional force appears
at each bristle: |Cy| < 0.13 during one cycle for all bristles
[Fig. 8(b)]. At this high Reynolds number, the flow around
each bristle is nearly symmetric with respect to the center of
the bristle because of a strong gap flow and the independent
formation of vortices at the edges of the bristle, which results
in a negligible C), for each bristle.

However, for Re = 10, bristles at the same distance from
the center of the wing produce Cy of the same magnitude but
different sign [Fig. 8(d)]; i.e., the distribution of C, is symmet-
ric with respect to the entire wing. In contrast to the behavior
of Cy at Re = 100 [Fig. 8(b)], the maximum value of C, at
Re = 10 exists near mid-stroke and the minimum value near
end-stroke. At end-stroke, in spite of the zero wing veloc-
ity, C,, is nonzero for all but the center bristle (green). More
interestingly, the difference in C, among the five bristles is
obvious when compared with the case of Re = 100, and the
order of Cy magnitude among the five bristles is consistent
through a cycle. The maximum and minimum magnitudes of
C, for the outer bristles (red and black) are 0.59 and 0.13,
respectively, while the maximum and minimum magnitudes of
C, for the inner bristles (yellow and blue) are 0.19 and 0.05,
respectively; the center bristle has almost zero Cy during a
cycle.

Although the magnitude of C, is smaller than that of
C, throughout a cycle, it is noteworthy that a huge devia-
tion among the bristles is found in C, rather than Cy. At a
low Reynolds number, owing to the virtual barrier caused by
a gap, the flow tends to turn around the outer edges of the
wing instead of penetrating through the gaps (Fig. 6). That
is to say, while each bristle seems to function separately in
the high-Re regime, an array of bristles acts like a single con-
tinuous body in the low-Re regime. The detour of the flow
around the outer edges of the wing induces a viscous force
in the y-direction greater than that at a high Reynolds num-
ber (Re = 100). While the total Cy, acting on the entire wing
is zero, each bristle is subject to a relatively large aerody-
namic force that pushes the bristle away from the center of the
wing.!?

Next, we compare the forces acting on a bristled wing and
aflat solid wing without gaps for Re = 10 (Fig. 9). For the solid
wing, we obtain C, and C acting on three separated segments,
the locations of which correspond exactly to the locations of
the first three bristles from the top (red, orange, and green)
in Fig. 8. In Fig. 9(a), the trend that C, has a greater peak
magnitude and a delayed phase when the section is farther
from the wing center is observed for both bristled and flat
wings. Here, one of the noticeable features of the bristled wing,
namely, a large force per actual wing area (gc in our model),
reported by Sunada ez al.,'! is also confirmed by the forces
acting on the segments. The maximum positive C, at a bristle
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FIG. 9. Comparison of x- and y-directional force coefficients between a bris-
tled wing (dashed curves) and a solid wing without gaps (solid curves) for
Re = 10. The ranges of C, and Cy are different. The colors of the curves
correspond to the color of each bristle shown in Fig. 8. The solid wing has
the same chord ¢ as the bristled wing. The curves for the bristled wing are
identical to the curves presented in Fig. 8.

is about 28% larger than that at the corresponding segment
of the solid wing for the outer segment (red curve) and about
53% larger for the inner and center segments (orange and green
curves).

The x-directional force Cy at the outer segment is affected
by the strong outer-edge vortex, and this vortex is generated,
regardless of the existence of a gap; see Fig. 3 (Multimedia
view) for the outer-edge vortex of a bristled wing. Thus, the
difference in C, between the bristled and solid wings at the
outer segment is not as pronounced as at the inner and center
segments. However, Cy at each segment shows little differ-
ence between the bristled and solid wings [Fig. 9(b)]. That is,
the viscous shear stress in the y-direction acting on a specific
section is not strongly affected by the existence of a gap. The
difference in C, for the corresponding segments between the
bristled and solid wings and the variation in C, among the
three segments indicate that the aerodynamic performance of
the entire bristled wing should be evaluated in the context of
the collective behavior of the bristles. The propulsive force
generated by each bristle will be significantly affected by the
relative positions of the bristles and their mutual interaction
by viscous diffusion.

To examine the effect of gap flow on the C, distribution in
more detail, the y-directional force per unitarea [f, = (n-T) »
n:unitnormal vector into the fluid domain and 7: viscous stress
tensor] on the left and right surfaces of the wing is illustrated
for the upper half of the wing in Fig. 10. At Re = 100, for
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the solid wing, the y-directional force changes gradually on
the two surfaces and has a positive value for most of the wing
[Fig. 10(a)]. In general, the windward side of the wing (right
surface at t* = 0.25-0.50 and left surface at t* = 0.50-0.75)
has a larger Cy, and Cy on the windward side increases from
the center to the upper edge. However, the flow through the
gap changes the spatial distribution of Cy drastically. For the
bristled wing at Re = 100, both the positive and negative Cr
exist on the surface of each bristle [Fig. 10(b)]. The upper and
lower edges of each bristle tend to have positive and negative
Cy, respectively. The spatial gradient of Cy on the surface is
found to be larger for the windward surface at #* = 0.25 and
0.75, where the wing speed is largest. The tendency to produce
both positive and negative Cy especially on the windward side
is caused by a strong gap flow turning around the edges of each
bristle, which can be inferred from the arrows showing the gap
flow in Fig. 5(a).

On the other hand, for Re = 10, because of the virtual
barrier effect of the gaps, the spatial distribution of Cy is not
significantly different at the same location between the solid
wing [Fig. 10(a)] and the bristled wing [Fig. 10(b)]. The sim-
ilarity in the C; distribution is obvious when compared with
the Re = 100 case. This characteristic also explains the trend of
similar C, over a cycle between the corresponding segments
of the two wings in Fig. 9(b). It is noteworthy that Cy is most
similar at t* = 0.40, when the gap flow relative to the wing is
found to be minimal [Fig. 5(a)], and the biggest difference is
observed at t* = 0.50 (stroke reversal).

C. Flapping bristled wing

In Secs. IIT A and III B, we have used a wing model with
a fixed angle of attack. Admittedly, for more realistic kine-
matics of the insect wing, we should take into consideration
the periodic change in the angle of attack: flapping motion
that combines oscillation and rotation [Fig. 1(d)]. Therefore,
unlike the case of oscillation alone [Fig. 1(c)], asymmetry
occurs in the flow structure, and the fluid force acting on
a bristle is not symmetric with respect to the center of the
wing. Basically, in flapping, the gap flow follows the same
mechanism described in Subsections III A and III B, which
depends strongly on the Reynolds number: for larger Reynolds

: FIG. 10. Spatial distribution of the y-directional force
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numbers, the gap flow reacts more slowly to the kinematics of
the wing. The phase and strength of gap vortices in the flapping
bristled wing are analogous to the oscillating bristled wing for
both Re = 10 and Re = 100 [Figs. 3(a) and 11 (Multimedia
view)]. In the high-Reynolds-number regime, each bristle of
a bristled wing seems to behave individually with regard to
aerodynamic force generation, as we discussed in Sec. IIIl B
for the oscillating wing. In this subsection, therefore, we will
focus on the effect of the asymmetry of the flow field and
aerodynamic force due to the additional pitching motion for
Re = 10.

During the deceleration phase, similar to the case of oscil-
lation, a gap vortex is annihilated and almost disappears around
t* = 0.40, before reaching end-stroke [Fig. 11(b) (Multimedia
view)]. Note that vorticity fields are almost identical between
the solid wing and the bristled wing at #* = 0.40 [Fig. 11(b)
(Multimedia view)]. Then, at end-stroke, a gap vortex of oppo-
site sign is clearly identified for all gaps. Also, the extinction
of the leading-edge and trailing-edge vortices is slower than
that of the gap vortex during the deceleration phase. Strong
leading-edge and trailing-edge vortices can still be observed
at t* = 0.40, in contrast to the gap vortices, which is simi-
lar to what is seen in the case of an oscillating wing [Fig. 3
(Multimedia view)]. However, in contrast to the oscillating
wing, for which the positive and negative vorticities in the
gap are of almost equal magnitude, now the negative vorticity
within the gap is dominant owing to convection of nega-
tive vorticity generated on the lower (pressure) surface of the
wing.
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FIG. 11. Vortex structure around a solid wing (upper row) and a bristled
wing (lower row) in flapping motion for (a) Re = 100 and (b) Re = 10.
The black line represents the wing. In this figure, the thickness of
the bristles is magnified from their actual thickness. Multimedia views:
https://doi.org/10.1063/1.5030693.2 and https://doi.org/10.1063/1.5030693.3
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FIG. 12. x- and y-directional force coefficients of five segments for a flapping
wing during one cycle at Re = 10. The dashed curves are for a bristled wing
and the solid curves for a solid wing. Note the different ranges of C, and Cy.
The color of each curve matches the colors in the model in Fig. 8.

With the approach similar to Fig. 9, Fig. 12 provides the
forces acting on five bristles for the bristled wing and five
segments at the corresponding positions for the solid wing.
The forces acting on each segment show similar patterns for
the solid and bristled wings, although their magnitudes are
different. We have already explained that the difference in C,
between the solid and bristled wings is smaller at the outer seg-
ment than at the inner segment for an oscillating wing (Fig. 9).
This trend is more pronounced in the case of flapping motion.
For the segment closest to the leading edge (red, leading-edge
segment), the maximum C, of the solid wing is only about
5% smaller than that of the bristled wing and the maximum
value of Cy is almost the same as that of the bristled wing. At
a low Reynolds number, there is a large leading-edge vortex
[red contour near the leading edge in Fig. 11(b) (Multimedia
view)] that is not shed from the wing and is much greater than
the gap vortex. For the flapping wing, the leading-edge vortex
tilts closer to the wing compared with the corresponding outer
vortex for the oscillating wing. Regarding force production of
the leading-edge segment, the leading-edge vortex of the flap-
ping wing makes a more significant contribution than the outer
vortex of the oscillating wing, which means that the existence
of the gap vortex becomes less critical in the flapping wing.
Thus, the forces generated in the x- and y-directions at the
leading-edge segment in the case of a bristled wing are similar
to those generated in the case of a solid wing. For segments
other than the leading-edge segment, C and C, magnitudes of
the bristled wing are generally greater than those of the solid
wing, which is analogous to the trend observed in C for the
oscillating wing [Fig. 9(a)].

IV. CONCLUDING REMARKS

For a bristled wing, we have numerically investigated the
formation of gap flow during the unsteady motion of deceler-
ation and stroke reversal and its effect on aerodynamic force
acting on each bristle. Throughout this study, we have espe-
cially emphasized the Reynolds number dependence of the gap
flow pattern. Even with a small change in the Reynolds number
(from Re =10 to Re = 100), for a bristled wing, a noticeable dif-
ference is observed in the formation of the gap vortex and the
velocity distribution of the gap flow. We have shown that the
reversal in the gap vorticity and the gap flow direction occurs
more rapidly at a lower Reynolds number owing to stronger
diffusion of vorticity and momentum, and the phase of the
gap flow is strongly affected by the Reynolds number. While
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each bristle behaves independently owing to strong gap flow
at a higher Reynolds number, at a lower Reynolds number, a
row of individual bristles behave collectively as if they were a
continuous body as demonstrated in the noticeable variation in
tangential force acting on the bristled wing among the bristles.
For a flapping bristled wing, a unique trend of force genera-
tion for the bristle near the leading edge is found as a result of
asymmetric leading-edge and trailing-edge vortex formation.

Although, in this study, fundamental aerodynamic princi-
ples have been explored for a periodic bristled wing, there
has been no extensive consideration of different flapping
kinematics. More importantly, our study is limited to a two-
dimensional model. It should be noted that the bristled wings
of the smallest insects are three-dimensional structures that
undergo complex motions, which may complicate the for-
mation of gap flow and its effect on the force generation of
individual bristles. We conjecture that, if our bristled wing
model has a finite span in a three-dimensional space, fluid can
detour the wing in the spanwise direction, which may reduce
the amount of gap flow and strengthen the effect of the virtual
fluid barrier. For a three-dimensional bristled wing in transla-
tional motion, Lee and Kim'> showed experimentally that a
leading-edge vortex and a trailing-edge vortex can be formed
even inside a virtually blocked gap between bristles positioned
in the chordwise direction, which demonstrates that the study
on three-dimensional effect is important to fully understand
the aerodynamics of a bristled wing. Based on our findings in
this study, in future work, we plan to study the aerodynamic
performance of individual bristles and their mutual interaction
in three-dimensional unsteady motions that are biologically
more relevant.
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APPENDIX: VORTICITY THRESHOLDS FOR THE
COMPUTATION OF CIRCULATION

(@) Re=100 (b) Re=10 .
Vorticity threshold
4.0 4.0 lwc/U)
3.0 3.0 +0
* 2.0 00.5
1_* 2.0 S e 10
1.0 1.0 02.0
0 & 0 3.0
-1.0 -1.0
0 0.1 02 03 04 05 0 0.1 02 03 04 05
[* [*

FIG. 13. Time history of nondimensional circulation I'*(= [/Uc) for
(a) Re = 100 and (b) Re = 10. The red color indicates positive circulation
inside the solid area depicted at Fig. 4(c), and the blue color indicates neg-
ative circulation inside the dashed area of Fig. 4(c). Circulation is computed
with several vorticity thresholds.
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