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SOFTWARE

KRDS: a web server for evaluating drug 
resistance mutations in kinases by molecular 
docking
Aeri Lee1, Seungpyo Hong2 and Dongsup Kim1*

Abstract 

Kinases are major targets of anti-cancer therapies owing to their importance in signaling processes that regulate cell 
growth and proliferation. However, drug resistance has emerged as a major obstacle to cancer therapy. Resistance 
to drugs has various underlying mechanisms, including the acquisition of mutations at drug binding sites and the 
resulting reduction in drug binding affinity. Therefore, the identification of mutations that are relevant to drug resist-
ance may be useful to overcome this issue. We hypothesized that these mutations can be identified by combining 
recent advances in computational methods for protein structure modeling and ligand docking simulation. Hence, we 
developed a web-based tool named the Kinase Resistance Docking System (KRDS) that enables the assessment of the 
effects of mutations on kinase-ligand interactions. KRDS receives a list of mutations in kinases, generates structural 
models of the mutants, performs docking simulations, and reports the results to users. The changes in docking scores 
and docking conformations can be analyzed to infer the effects of mutations on drug binding and drug resistance. 
We expect our tool to improve our understanding of drug binding mechanisms and facilitate the development of 
effective new drugs to overcome resistance related to kinases; it may be particularly useful for biomedical researchers 
who are not familiar with computational environments. Our tool is available at http://bcbl.kaist.ac.kr/KRDS/.
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Background
Kinases constitute approximately 30% of human cellular 
proteins and are involved in the transmission of cellular 
signals by transferring a phosphate group to their specific 
targets [1, 2]. Specifically, kinases play important roles in 
the regulation of cell growth and proliferation and there-
fore they are potential targets for anti-cancer therapies; 
kinase inhibitors have been successfully developed into 
anti-cancer drugs [3–5]. However, cancer cells often 
acquire resistance to these drugs after prolonged treat-
ment, and the prevention of drug resistance has become 
a major challenge in anti-cancer therapy development [6, 
7]. Drug resistance is the result of diverse mechanisms, 
including an imbalance between drug influx and efflux, 

alterations in drug targets, and the activation of alterna-
tive pathways [8]. However, the alteration of drug bind-
ing sites is a direct and well-known mechanism of drug 
resistance [7–9] and missense mutations at binding sites 
in kinases, such as ABL1, EGFR, FLT3, KIT and PDG-
FRA, have been observed in various cancers [7, 10]. For 
example, a threonine (T) to isoleucine (I) substitution 
at residue 315 (T315I) of BCR-ABL1 results in reduced 
sensitivity to a number of drugs, including imatinib, nilo-
tinib, dasatinib, and bosutinib, in patients with chronic 
myeloid leukemia [11, 12]. The T790M mutation in the 
epidermal growth factor receptor (EGFR) kinase domain 
is also responsible for the resistance of non-small cell 
lung cancer cells to erlotinib and gefitinib [13, 14]. A bet-
ter understanding of the structural mechanism of drug 
resistance will aid in the development of new drugs. 
For example, ponatinib was designed to treat patients 
who exhibited resistance to previously available drugs, 
such as imatinib, nilotinib, dasatinib, and bosutinib [15]. 
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Therefore, the identification of mutations responsible for 
drug resistance would not only reveal the mechanism of 
drug resistance, but also lead to the development of new 
effective drugs.

Efforts to understand drug resistance have led to the 
compilation of various types of information about drug 
resistance in databases [16–21]. Sandgren et  al. [16] 
established a well-curated public database containing 
mutations related to tuberculosis drug resistance, and 
users can find information on how often certain muta-
tions are observed for particular drugs (http://www.
tbdreamdb.com). The Comprehensive Antibiotic 
Research Database (CARD) (http://arpcard.mcmaster.
ca) integrates the sequence data for microbial antibiotic 
resistance genes [17]. CARD assigns putative antibi-
otic resistance genes to unannotated microbial genome 
sequences based on sequence similarity. The Stanford 
HIV Drug Resistance Database (HIVDB) (http://www.
bioafrica.net/saturn) contains reverse transcriptase 
sequences underlying HIV drug resistance [18]. Sibley 
and Ringwald [19] outlined how to construct a publicly 
accessible database containing information related to 
antimalarial drug resistance. In the Cancer Drug Resist-
ance Database (CancerDR), the pharmacological profiles 
of 148 anticancer drugs against around 1000 cancer cell 
lines were deposited with 116 drug-target relations [20]. 
The association between various mutations and Hercep-
tin in H342-positive breast cancer can be found in the 
HerceptinR database [21]. These databases offer a list of 
mutations and drug-target associations. Researchers can 
determine if a certain mutation is associated with drug 
resistance based on the information in these databases, 
and the structural changes caused by mutations can be 
integrated.

None of the resistance databases mentioned above 
provide an automated prediction tool to study structural 
changes leading to drug resistance caused by mutations 
in human kinases. Our server searches for mutations 
related to drug resistance by assessing mutational effects 
on drug binding. This can be achieved by modeling the 
structure of mutants computationally and by performing 
molecular docking simulations. Alcaro et  al. [22] evalu-
ated significantly correlated resistance mutations in HIV 
reverse transcriptase (RT) with three non-nucleoside RT 
inhibitors (NNRTIs) using AutoDock Vina. Sivaprakasam 
et  al. [23] examined double mutations (A16V + S108T) 
that occurred in dihydrofolate reductase (DHFR) of PT 
(PfDHFR-TS) and led to resistance to specific drugs. They 
used four docking programs (FlexX, GOLD, Glide, and 
Molegro) to investigate the performance of docking and 
the correlation of docking scores based on the binding 
affinity data between wild-type and mutant-type forms. 
They obtained the best correlation  (R2 = 0.911)  between 

docking scores and binding affinity data using the GOLD 
program.

Currently, there are a number of protein modeling 
and docking tools that can be combined to evaluate the 
structural impact of mutations on drug binding, but for 
many biomedical researchers, using these tools would be 
a major challenge. Therefore, we developed a web server 
named the Kinase Resistance Docking System (KRDS) 
that allows researchers to easily evaluate the effect of a 
mutation on drug binding. Our server automatically gen-
erates conformational ensembles for both wild-type and 
mutant-type forms using RosettaBackrub [24], and per-
forms docking simulations of given drugs to both types 
using GOLD [25] and AutoDock Vina [26]. The dock-
ing scores and conformations of the original and mutant 
kinases are reported to users (Fig.  1). We expect our 
server to be used as a tool to obtain structural models for 
studies of drug resistance.

Implementation
Data
The structures of human protein kinases were down-
loaded from the RCSB Protein Data Bank (PDB) (http://
www.rcsb.org/pdb/) [27] based on the Swiss-Prot human 
kinase list released in 2016 (http://www.uniprot.org/
docs/pkinfam). The list of UniProtKB/Swiss-Prot human 
protein kinases was divided into families or subgroups 
according to the sequence similarity of catalytic domains. 
We chose the structure with the best resolution if there 
were multiple structures. Water molecules, unnecessary 
heteroatoms, and solvent and solute molecules from all 
PDB files of 241 kinases were removed, and structural 
alignments were generated. We next integrated addi-
tional structural information on the 241 kinases, such 
as DFG-in and DFG-out conformations [28]. Users can 
browse detailed information on the 241 kinases, e.g., 
gene symbol Entrez IDs, PDB IDs, resolution, mutation 
status, and in or out states of DFG, in our Curated Kinase 
Database. A list of 178 commercially available kinase 
inhibitors used by Anastassiadis et  al. [29] for compre-
hensive kinase activity profiles was used to establish a 
kinase inhibitor database. Among the 178 kinase inhibi-
tors, a quinazoline scaffold (erlotinib, gefitinib, and lapa-
tinib), a thiazole scaffold (dasatinib), aminopyrimidine 
scaffold (crizotinib), and a pyrrolo[2,3-d]pyrimidine scaf-
fold (tofacitinib) as Type I inhibitors, an indolone scaffold 
(sunitinib) as a type I 1

/

2 B inhibitor, and a 2-phenylami-
nopyrimidine scaffold (imatinib) as a Type II inhibitor 
were observed [30, 31]. The structures of kinase inhibi-
tors were retrieved from PubChem (http://pubchem.
ncbi.nlm.nih.gov/) [32]. In total, the structures of 241 
kinases and 178 kinase inhibitors were deposited in our 
server.
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http://www.tbdreamdb.com
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http://pubchem.ncbi.nlm.nih.gov/
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Structural ensemble generation and mutant structure 
modeling
In conventional molecular docking simulations, the 
structures of ligands are treated as flexible, while the 
structures of proteins are treated as rigid [33, 34]. The 
lack of flexibility in protein structures can hinder the 
search for the proper binding conformation. One way to 
solve this problem is to use an ensemble of protein struc-
tures during docking simulations [35]. Thus, in our tool, 
an ensemble of five structures is generated using a flexible 
backbone modeling method, RosettaBackrub [24, 36], for 
both the original and the mutant kinase structures. Only 
five conformational ensembles for each structure are 
generated to minimize computational time (30–40  min 
for one drug). After the dockings are performed on those 
five conformations, the best docked structure is chosen. 

The mutations are incorporated into the models by sub-
stituting the amino acids during structure modeling. We 
generated five non-native CDK2 structures with the 
RosettaBackrub algorithm and performed re-docking of 
co-crystals into the corresponding five ensembles (Addi-
tional file 1: Table S1). Variation in RMSD values between 
ensemble structures, such as 2FVD, 4ERW, and 4GCJ, 
was observed. The results showed that the best docked 
ensemble had the lowest RMSD poses, except for 3TI1 in 
complex with sunitinib. When we compared our docking 
results with kinase binding assay data [37], the docking 
result for staurosporine were consistent with experimen-
tal data, while the binding result for CDK2 with sunitinib 
was not determined in a 10 micromole screen, and dinac-
iclib, r547, and x64 were not available in assay data. The 
high RMSD values between CDK2 and sunitinib for the 

Curated Kinase 
Docking

User Input Kinase 
Docking

Query : O00141 126 I

Upload a kinase of 
interest

Upload a ligand of 
interest

Query : 126IA

Docking simulation

Report results

Generation of ensemble 
structures 

PubChem id from  
Curated Kinase Inhibitor 

Database

UniProt id from Curated 
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Select the structure 
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affinity

Generation of ensemble 
structures

Docking simulation
(GOLD, AutoDock Vina)

Generation of ensemble 
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+ +
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A kinase and a drug
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a b

Fig. 1 Server workflow. a Users can submit a list of mutations and a list of drugs via the Curated Kinase Docking and User Input Kinase Docking sec-
tions. The Curated Kinase Docking accesses the list of mutations in the kinases and the list of ligands in our Database, for which we have collected 
data of kinases with a known structure. Users can upload the structures of kinases and ligands through the User Input Kinase Docking section. b 
Following submission, the server will model the mutant structures and perform docking simulations. An example of a simple schematic diagram 
for predicting drug resistance with one kinase and one drug using our server is shown. In the original kinase structure, the wild-type generates five 
ensemble structures, while the mutant type introduces mutations and then generates five ensemble structures. After that, our server performs a 
molecular docking simulation using GOLD and AutoDock Vina. When the simulation is finished, the docking scores with the highest affinity and the 
corresponding conformations of the original and mutant kinases are reported to users
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re-docking of sunitinib to the tertiary CDK2 ensembles 
might be explained by the weak interaction, as shown in 
the experimental result.

Molecular docking
GOLD version 5.2.2 [25] and AutoDock Vina version 
1.1.2 [26] display good docking performance according 
to previous studies [38–40] and therefore were adopted 
for molecular docking. The genetic algorithm and Gold-
Score fitness function are employed in GOLD. The Gold-
Score scoring function is based on terms from molecular 
mechanics force fields which calculates the sum of the 
interaction terms. For AutoDock Vina, the default con-
formation search algorithm, which is a combination of 
optimization algorithms, including genetic algorithms, 
particle swarm optimization, and simulated annealing, 
and the default scoring function, which is a hybrid score 
function derived from the X-score, are used. The hybrid 
scoring function in AutoDock Vina is a combination of 
empirical and knowledge-based functions. The empirical 
scoring function considers energy terms, such as hydro-
gen bonds, ionic interactions, hydrophobic effects, and 
binding entropy. Each energy component is used to gen-
erate a final score. The knowledge-based scoring func-
tion is based on a statistical analysis of the frequency 
distributions of favorable interactions between a ligand 
and a protein observed from crystal structures. A series 
of docking simulations are performed for each structure 

in the ensembles, and the binding pose with the highest 
docking score is reported.

Results report
The results of the docking simulation are reported to the 
user via email. First, the docking scores with both the 
original and mutant kinases are reported for the quan-
titative evaluation of the effects of mutations on ligand 
binding (Fig.  2a). GOLD uses force-field-based scoring 
functions [25], while AutoDock Vina uses its own hybrid 
scoring function [26]. GOLD outputs docking results 
in terms of a fitness score. The higher the fitness is, the 
better the docked interaction between a protein and a 
ligand. AutoDock Vina outputs a result in terms of dock-
ing energy scores. The lower the score is, the better the 
docked interaction. Our server reports the fitness score 
of GOLD and the absolute values of AutoDock Vina. If 
the two docking systems do not agree in terms of docking 
scores, running our program multiple times and examin-
ing the binding poses of a ligand would be recommended. 
The docking conformations of original and mutant 
kinases are visualized using JSmol (http://wiki.jmol.org/
index.php/JSmol) to highlight the structural consequence 
of the mutation (Fig. 2b). Users can download these con-
formations for further structural comparisons.

Method selection
Users can select one of three options in our server: 
Curated Kinase Docking, User Input Kinase Docking, 

a bLinks to structures for 
downloading

GOLD VINA GOLD VINA

Drug 1 Drug 2

Click to view the structures

Options for handling the 
model

Fig. 2 Result report. a Docking scores for original and mutant kinases. The above example shows the results of docking with two drugs in Curated 
Kinase Docking. b The docking conformations for original and mutant kinases are illustrated using JSmol

http://wiki.jmol.org/index.php/JSmol
http://wiki.jmol.org/index.php/JSmol
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and Database. Users can use our automated mutant 
structure modeling and ligand docking simulation ser-
vices in the first two options  (Fig.  3). In the Database 
option, users can browse the list of human kinases and 
kinase inhibitors. 

Curated kinase docking
In this option, users can model and perform docking sim-
ulations for mutations in the kinases in the curated Data-
base. Users need to enter the following information: (1) 
Job name, (2) email address, (3) list of mutations, and (4) 
list of ligands (Fig. 4a). Upon submission, the server will 
generate a structural model for each mutation and per-
form docking simulations between all of the listed ligands 
and kinase mutation structures, including the original 
kinase structure. The results will be reported to the user 
through the given email address with the given job name. 
The list of mutations has a specific format, in which a 
mutation should be described on a line with a UniProt 
identifier to specify a kinase, the position of mutation, 
and the amino acid to be mutated. For example, “O00141 
226 I” represents a mutation in kinase SGK1 that substi-
tutes residue 226 with isoleucine. For the ligand list, the 
PubChem identifier of the ligand should be given. For 
a single submission, up to five mutations and up to two 
drugs can be given. In this option, both the kinases and 
drugs have to be in our database, which can be found in 
the DATABASE section. Otherwise, users can upload 

the structure of a kinase and a drug through User Input 
Kinase Docking.

User Input Kinase Docking
Users can manually upload the structures of a kinase and 
a drug in this option, and designate mutation sites in the 
kinase. Users can search specialized information about 
kinases at http://www.kinase.com, which provides clas-
sified human kinase genes that are not in our datasets, 
and those kinases can be used to model kinases in this 
section. In this section, users need to upload the kinase 
and drug structure files and enter the following informa-
tion: (1) Job name, (2) email address, (3) list of mutations, 
and (4) ligand docking coordinates (Fig. 4b). A mutation 
should be input as a single string of the name of the chain, 
position of the mutation, and amino acid to be mutated. 
For example, “366MA” indicates the mutation of resi-
due 366 on chain A into methionine. Additionally, users 
can designate the coordinates of the docking center, on 
which the docking simulation will be performed. Other-
wise, the uploaded kinase will be superimposed with the 
reference kinase (PDB ID: 4BKJ), and the ligands will be 
docked around its ligand binding site. The kinase input 
file should be in PDB format, and the ligand file should be 
in Mol2 or SDF (3D conformer) format. Docking simula-
tion for up to five mutations is allowed, and the Curated 
Kinase Docking procedure will be executed.

Check out in our 
DATABASE

UniProt identifier, the position 
of mutation, an amino acid for 
mutation

PubChem ID

Ligand 
docking 
center

a b

the position of mutation, 
an amino acid for 
mutation, chain name

Upload

Job type Job type

Click this button after 
filling out

Click this button after 
filling out

Fig. 3 Job submission page. a In Curated Kinase Docking, the UniProt ID, residue position, and mutant amino acid should be specified in Kinase 
and Mutational Substitutions. The PubChem ID is allowed in Batch Query for Kinase Inhibitors. b In User Input Kinase Docking, users can upload a 
PDB format file for a kinase structure and a MOL2 or SDF format file for a ligand structure, which should be of a three-dimensional conformer. Speci-
fication of the drug binding site will result in docking around the given three-dimensional coordinate. The list of mutations in the form of chain 
name, residue index, and mutation amino acid should be given in the Mutation List text box

http://www.kinase.com
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Database
We have collected the structures of human kinases and 
the structures of kinase inhibitors from recent publica-
tions. This database contains 241 human kinases and 
offers gene information, including the UniProt identifier, 
mutation state, gene symbol, Entrez identifier, and struc-
tural information on kinases, such as the PDB identifier 
and DFG-in or DFG-out state (Fig. 4a). This database also 
contains 178 kinase inhibitors that were deposited in our 
system along with their name, PubChem identifier, and 
drug targets (Fig. 4b). Users can search kinases and drugs 
in the database before executing docking mutations in 
Curated Kinase Docking.

Case studies
Re‑docking simulations
Before applying our method, we first confirmed that the 
molecular docking on kinases mostly reproduced the 
correct binding poses by re-docking ligands into the orig-
inal co-crystal positions, including the kinases that we 
used for the case study (Additional file  1: Table S2 and 
Figure S1).

Structural docking simulations of DFG states
We then checked whether the molecular docking 
approach reflected the various conformations of kinases 
and yielded reliable docking results. It is well known that 
protein kinases adopt two “Asp-Phe-Gly (DFG)” motifs: 
the active DFG-in conformation and inactive DFG-out 

conformation at the activation loop [41]. Kinase inhibi-
tors are classified depending on which state of the kinase 
conformation the drug binds to [30, 41]. We wanted to 
determine if the consideration of DFG-in and DFG-out 
states for kinases would be reflected in molecular dock-
ing. We docked on various conformations of five kinases 
based on well-organized DFG-in and DFG-out state data 
[28]. Additional file  1: Table S3 lists the various kinase 
structures used for docking for these five kinases. The 
docking values shown in Additional file  1: Table S4 are 
the average docking scores over all available PDB struc-
tures in each state of the kinase. For example, imatinib is 
a Type II kinase inhibitor that binds to the kinase when 
the DFG motif is in the “out” state [41]. The docking 
results of imatinib showed higher values for structures 
of the DFG-out state than of the DFG-in state. Likewise, 
we observed that molecular docking generated moderate 
docking scores in general for the various conformations 
of kinases in each state (Additional file 1: Table S4, Figure 
S2).

We next examined whether these results are repro-
duced by our system in which the docking calculations 
were performed by taking a single PDB structure from 
DFG-in and from DFG-out, generating ensembles, con-
ducting dockings on ensembles with ligands, and extract-
ing maximum values among ensembles for each ligand. 
As shown in Additional file 1: Table S5, our docking sys-
tem generally reproduced the docking results when we 
utilized all PDB structures (Additional file 1: Table S4).

a b
UniProt ID Search Compound name

Link to detailed information of compound

List of targets

Fig. 4 Kinase and kinase inhibitor database. a The Curated Kinase Database contains 241 human protein kinases and the UniProt identifier, muta-
tion state of PDB, gene symbol, DFG-in or DFG-out state, etc. b The Kinase Inhibitor Database provides information on 178 kinase inhibitors. When 
the user clicks on the compound name, detailed information, such as molecular weight, SMILES, InChl identifier, and structures of the drug, will be 
provided
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Mutant docking simulations
Our server provides a collection of services that gener-
ate the structural ensembles of the original and mutant 
kinases and perform docking simulations. This approach 
will enable the assessment of the effects of mutations on 
drug binding by analyzing changes in docking scores and 
in docking conformations induced by a certain muta-
tion. To show the validity of this approach, we applied 
our method to two well-known mutations responsible 
for drug resistance. The T315I mutation in BCR-ABL1 
was reported to be responsible for the resistance of 
chronic myeloid leukemia to several anti-cancer drugs 
[7]. This mutation has emerged following treatment 
with imatinib, and therefore mutant cells are resistant to 
imatinib [15]. In addition, it has resulted in resistance to 
other anti-cancer drugs, including dasatinib, nilotinib, 
and bosutinib. However, the mutant is still susceptible 
to ponatinib and axitinib [42]. We applied our method to 
predict this drug-dependent response of the T315I muta-
tion. We used the human ABL1 kinase domain (Uniprot 
ID: P00519) in complex with imatinib (PDB ID: 2HYY). 
According to the docking simulation in GOLD, the T315I 
mutation reduced the binding affinities of imatinib, 

dasatinib, nilotinib, and bosutinib by 59, 46, 47, and 30%, 
respectively (Fig. 5a, Additional file 1: Table S6). On the 
other hand, the docking scores for the susceptible drugs, 
ponatinib and axitinib, remained higher, although bind-
ing affinity was reduced by 20 and 5% for ponatinib and 
axitinib, respectively. The results from Vina in ABL1 
were consistent with those from GOLD (Fig.  5c, Addi-
tional file  1: Table S7). The absolute values of the Vina 
score (kcal/mol) for T315I decreased from 12.4 to 7.2 for 
imatinib (41.93% reduction), from 8.7 to 6.2 for bosutinib 
(28.73% reduction), from 9.7 to 7.3 for dasatinib (24.74% 
reduction), and from 13.4 to 9.2 for nilotinib (31.34% 
reduction). The Vina results for ponatinib and axitinib 
decreased from 11.9 to 10.5 (11.76% reduction) and from 
8.9 to 8.4 (5.61% reduction), respectively. The predicted 
binding conformations of imatinib, bosutinib, and dasat-
inib appeared to change significantly after the threonine 
residue was substituted with isoleucine, suggesting that 
the threonine at position 315 plays an important role 
in stabilizing drug binding in ABL1 (Fig.  6a). Ponatinib 
was unaffected by the mutation of the threonine residue 
and interacts with other residues. The pose of axitinib in 
mutant ABL1 was not significantly different from that of 
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Fig. 5 BCR-ABL1-T315I and EGFR-T790M docking scores. a The Gold fitness scores of the T315I-sensitive drugs imatinib, dasatinib, nilotinib, and 
bosutinib decreased by more than 20% compared to those of the wild type. However, the docking scores of the T315I-insensitive drugs ponatinib 
and axitinib remained higher than those of other T315I-sensitive drugs. b The EGFR-T790M mutant is known to be responsible for resistance to 
erlotinib and gefitinib, and their docking scores decreased by 20 and 36%, respectively, in the docking simulation. c The absolute values of the Vina 
scores (kcal/mol) of T315I decreased by 41.93, 28.73, 24.74, and 31.24% for imatinib, bosutinib, dasatinib, and nilotinib, respectively, compared to 
those of the wild type. The docking scores of T315I for ponatinib and axitinib decreased by 11.76 and 5.61%, respectively. However, the docking 
score of ponatinib for T315I was already high, with an absolute value of 10.5 kcal/mol. d The absolute values of Vina scores (kcal/mol) of T790M 
decreased by 29.13 and 13.48% for erlotinib and gefitinib, respectively, compared to those of the wild type
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the wild type, because axitinib is capable of interacting 
with isoleucine.

The T790M mutation of EGFR is another example of 
a drug resistance mutation, and it was reported to be 
responsible for the resistance of non-small lung can-
cer to gefitinib and erlotinib [7]. We used the human 
EGFR kinase domain (Uniprot ID: P00533) in complex 
with erlotinib (PDB ID: 4HJO). The docking scores in 
GOLD for both drugs were decreased by the T790M 
mutation from 74.46 to 59.78 for gefitinib (20% reduc-
tion) and from 79.53 to 51.15 for erlotinib (36% reduc-
tion) (Fig.  5b, Additional file  1: Table S6). The results 
from Vina for EGFR were also consistent with those 

from GOLD (Fig.  5d, Additional file  1: Table S7). The 
absolute values of the Vina score (kcal/mol) for T790M 
decreased from 9.5 to 6.7 for erlotinib (29.47% reduc-
tion) and from 8.9 to 7.7 for gefitinib (13.48% reduction). 
The predicted binding conformation of erlotinib flipped 
back after the substitution of the threonine at position 
790 with a methionine residue (Fig.  6b). The threonine 
residue at position 790 appears to be involved in form-
ing a stable bond with a ligand. According to our dock-
ing analyses, the drug resistance-related mutations could 
be identified from the changes in the predicted binding 
affinity. When taken together, we observed a difference of 
more than 20% in binding affinity when we analyzed two 

ABL1(2hyy)

ima�nib

bosu�nib

dasa�nib

nilo�nib

pona�nib

axi�nib

ABL1 ABL1_T315I

EGFR(4hjo)

erlo�nib

gefi�nib

EGFR EGFR_T790M

a

b

Fig. 6 Predicted binding mode from the docking analysis. a The predicted binding conformations of each drug for both wild-type and mutant 
ABL1. b The predicted binding conformations of each drug for both the wild-type and mutant EGFR
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well-known kinases with eight drugs  (Additional file  1: 
Table S9) that are related to drug resistance.

Docking simulations for comparison with experimental 
values
To further validate our system, we conducted a compara-
tive analysis of our docking scores with kinase binding 
assay data [37]. There are nine other kinases with muta-
tion information from kinase binding assay data, i.e., 
BRAF, FGFR3, FLT3, KIT, MET, PIK3CA, RET, MET, and 
LRRK2. A crystal structure is not available for LRRK2. 
No drugs showed a significant kd value between the 
wild-type and mutant BRAF, FGFR3, FLT3, MET, and 
PIK3CA. Excluding these kinases, dockings of ABL1, 
EGFR, KIT, and RET were performed for each kinase 
based on mutation information within our system, and 
the docking scores were compared with the kd values 
(Additional file  1: Table S8). If the kd value of a drug is 
higher for the mutant than for the wild-type kinase, the 
docking result should be lower for the mutant than for 
the wild type. As expected, a negative correlation was 
detected between changes in docking score and kd value 
following mutations (Fig. 7), but the correlation was not 
statistically significant (R2 =0.3073; p value = 0.45). Addi-
tional kd values for kinases associated with drug resist-
ance are necessary to confirm this correlation.

Conclusions
Following treatment with anti-cancer drugs, cancer cells 
gradually acquire mutations that negate the beneficial 
effects of the drugs. The growth of these cancer cells can 
no longer be inhibited, and drug resistance becomes a 
major threat to the survival of patients. The identification 

of the mutations responsible for drug resistance is the 
first step in resolving this problem. In this study, we pre-
sent a computational analysis of structural modeling of 
both wild-type and mutant kinases with kinase inhibitors 
based on molecular docking simulations and provide a 
publicly accessible web server. This server would be par-
ticularity useful for biomedical researchers who are not 
familiar with the computational environment. We antici-
pate that researchers will utilize our tool to explore the 
predicted binding mode of kinase inhibitors with struc-
turally modeled mutant kinases.
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