Abstract

To have competitive advantage over competing telecommunications services, it is crucial to provide higher value with lower cost. In this study, CUP (Cost-Utility-Preference) chart is developed to analyze the market competition dynamically. It considers both the competition and customers' preference of each service to explain the change of the competitive landscape over time. Conjoint analysis is used for detailed analysis.

Using the chart, we can analyze the currently competing services, predict the future scenarios of the competition, develop new services, and understand the causes of successes or failures of telecommunications services.

1. CUP

CUP = ∆AE

2. CUP

CUP = ∆AE

jahn@kgsm.kaist.ac.kr
3. C U P → Δ E

4. C U P → Δ E

5. p→f \(\sim \) \(O_{\text{shape}} \) → \(f \rightarrow \) \(O_{\text{shape}} \)

6. p→f \(\sim \) \(O_{\text{shape}} \) → \(f \rightarrow \) \(O_{\text{shape}} \)

7. \(O_{\text{shape}} \) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(A) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(B) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(C) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(D) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(E) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(F) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(G) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(H) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(I) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(J) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(K) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(L) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(M) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(N) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(O) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(P) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(Q) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(R) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(S) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(T) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(U) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(V) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(W) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(X) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(Y) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)

(Z) \(\sim \) \(f \rightarrow \) \(O_{\text{shape}} \)