
Automatic Extraction of Parallel lines in 
Catadioptric Images 

 
 

Jean-Charles Bazin, In So Kweon 
Robotics and Computer Vision Laboratory, KAIST 

Daejeon, KOREA 
jcbazin@rcv.kaist.ac.kr   iskweon@kaist.ac.kr 

 
 
 
Abstract – Extracting parallel lines in images is an 
important step for many robotic tasks, such as road 
extraction, camera calibration, 3D reconstruction, 
etc… Moreover, nowadays, most of robots use 
catadioptric cameras since they provide a much wider 
field of view compared to traditional perspective 
cameras. Therefore, in this paper, we aim to develop 
an algorithm which automatically extracts parallel 
lines in single catadioptric images. We also provide 
many details concerning implementation issues so 
that our method can be easily used by researchers 
from different departments. 
 
 

I. INTRODUCTION 
 
Parallel lines are often considered as an important tool 
for many robotic applications, such as road extraction [8], 
camera calibration [7], 3D reconstruction [7], etc… 
Unfortunately, automatically extracting parallel lines is 
not an easy task. Moreover, most of these works are 
based on traditional perspective cameras although 
today’s robots are frequently equipped with a 
catadioptric camera. Contrary to conventional cameras, 
catadioptric cameras provide a much wider field of view 
which permits to obtain much more information from the 
environment and this is one of the main reasons why 
they are broadly used nowadays. In this paper, we first 
introduce catadioptric projection and we remind our 
previous work concerning catadioptric line extraction. 
Then we present our algorithm for automatic extraction 
of bundles of parallel lines in single catadioptric images 
and finally we show some results. This paper provides 
much information concerning implementation issues so 
that researchers whose major is not computer vision can 
easily implement the proposed algorithm. 
 

II. CATADIOPTRIC VISION AND PROJECTION 
 
A. General information 
Intuitively, the wider the field of view is, the more 
information we can gather from the environment. 

Obviously, an imaging system that might see “in all 
direction” (cf Figure 1) could gather, for example, not 
only a higher number of parallel lines but also lines in 
different directions. Such sensors are simply called 
“omnidirectional systems”. Catadioptric cameras are a 
specific kind of omnidirectional systems. They are 
devices which use both mirrors (catadioptric elements) 
and lenses (dioptric elements) to form images through a 
conventional camera. Such systems usually have a field 
of view greater than 180 degrees and are getting both 
cheaper and more effective. Whereas they have long 
been used in telescopes (to focus light from stars onto the 
eye of the observer), only recently they gained in 
popularity together with other omnidirectional vision 
systems based on fish-eye lenses or clusters of outwards-
looking cameras.  
 

 
Figure 1: compared to traditional cameras (left), 
catadioptric systems (right) can gather much more 
information from the environment, such as a higher 
number of parallel lines that also lie in different 
directions. 
 
B. Sphere projection theorem 
In [1], Geyer and Daniilidis have introduced the 
equivalent sphere theorem: a central catadioptric image 
formation is equivalent to a two step mapping via a 
sphere (cf Figure 2). First a point Xw in 3D world is 
projected to a unit sphere at Xs with respect to the single 
effective viewpoint O, then the point Xs on the sphere is 
perceptively projected to the image plane at m from a 
particular point Oc, obtained by calibration. This point m 
would have been the same if we had performed the 



traditional catadioptric projection, meaning on the mirror 
and then on the image plane. This theorem not only 
permits to generalize all catadioptric projections 
(parabolic, hyperboloid) but also has strong implications 
in line detection, as show in the following sections.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: by sphere projection theorem, a line L in space is 
projected to a great circle Ls on the sphere, which then 
projected to a conic section CL on the image plane from 
Oc, obtained by calibration (cf text for details).  
 
C. Sphere projection equations 
We suggest working in the sphere space, instead of the 
catadioptric image plane, for various reasons: taking the 
special distortions into account, generalizing the method 
for all catadioptric systems, simple neighborhood 
definition, etc… Therefore, the catadioptric image must 
be projected on this new space. Whereas it is an 
important step in catadioptric vision, the equation 
projections are either given with no derivations [5] or 
require specific knowledge in computer vision [9]. By 
using notations of figure 2, an image point P can be 
projected into a sphere point Ps as explained below (for 
derivations details, see appendix A1, based on [5]). 

( , ) (sin cos ,sin sin ,cos )sP x y P θ φ θ φ θ= → =  
 
First the image point P is converted to Pi in camera 
frame coordinates [7]:  

( )0' / ux x u a= −   

( )0' / vy y v a= −  

Where (u0,v0) is the camera center and (au,av) the focal 
length in horizontal and vertical directions (details in [7]). 
Then we project this new point Pi into the sphere point 
Ps, based on spherical coordinates with parameters φ  
andθ : 

[ ], 2 ( ', ')D cart pol x yφ =  

( )2 2 2 2
2

1acos ( ) ( ) (1 )D D
d

θ ξ ξ ϕ ξ ϕ ξ⎛ ⎞= − + + + −⎜ ⎟
⎝ ⎠

Where
22 2 2( )p id O P D ξ ϕ= = + +  and parameters 

ξ and ϕ  are depicted on figure 3. The calibration 
parameters (u0, v0, au, av, ξ and ϕ ) can be easily 

obtained by the toolbox [6]. 

 
Fig 3: an image point Pi can be projected into the sphere 

at Ps and reciprocally 
 

III. LINE EXTRACTION 
 
In [3], we have introduced a method to extract lines in 
catadioptric images. We remind this algorithm for many 
reasons: convenience of the readers, explaining the 
parallel lines extraction method more clearly, and 
providing important information for an easy and efficient 
implementation. 
 
A. General Framework 
As explained, a line in space is projected as a great circle 
on the sphere. Let “associated plane” be the plane that 
goes through the sphere center O and the given great 
circle. Thus, each great circle can be characterized by the 
normal of its associated plane. The goal of the algorithm 
is to find the normal vectors. It is composed of five main 
steps as depicted in Figure 4 and is an extension of the 
polygonal approximation approach for perspective 
cameras towards catadioptric vision. 
 

 
Figure 4: framework of our line extraction algorithm 
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Step 1 consists in detecting edges, typically by Canny 
Edge operator on the catadioptric images. Step 2, edge 
chaining, permits to link the connected edge points into 
chains by [10]. At step 3, each edge is projected on the 
sphere using projection equations. Instead of computing 
the projections at each frame, which is very time 
consuming, we suggest using a LookUp table that saves 
the correspondences between the image pixels and the 
sphere coordinates. 
 
A. Splitting Step 
The splitting step is the most important one: for each 
edge chain, we test whether it verifies the great circle 
constraint. If it does not, the edge chain is split until the 
great circle constraint is verified or the chain length is 
too small. 
Let n=(a,b,c) be the normal vector of a great circle. Thus 
its plane equation is 0ax by cz+ + =

.
A point 

( ), ,s s sx y z verifies the great circle constraint 
if ( )s s sabs ax by cz DistThresh+ + < . Formally and 
in an implementation point of view, we apply the 
following function (Fig 5) for each edge chain:  

 

Fig 5: pseudo-code for line splitting 
 

 
Fig 6: typical result after line splitting 

The final output of the LineDetection function is a list of 
normal vectors whose associated edge chain points verify 
the great circle constraint, ie they belong to a line. For 
readers information, we have used LengthTresh=50 and 
DistThresh=0.004. 
 
B. Merging Step 
During the edge detection step, a 3D line might not be 
continuously detected as an edge. For example, a side of 
a building can be partially occluded by a tree. Thus this 
line may be divided into two or many edge parts during 
edge detection step and thus the splitting step will 
compute one great circle (ie normal vector) for each edge 
part. Thus the idea is to simply merge the similar normal 
vectors. Two normal vectors ni and nj are said similar if: 

( )acos .
T

i jn n AngleThresh<
ur uur

 

 
Depending on the testing order, different results might be 
obtained. That is why we had also suggested using a 
graph approach and compute the new normal vectors 
using all the points of similar normals by Singular Value 
Decomposition. 
 

 
Fig 7: typical result after line merging 

 
 

 
Fig 8: the direction of two parallel lines corresponds to 
the cross product of the normal vectors of their 
associated planes ([2],[4]). 

 



 
IV. PARALLEL LINES EXTRACTION 

 
Now that we have detected lines, the goal is to extract 
the parallel lines. As explained in [2], a set of world 
parallel lines intersect in two antipodal points in the 
sphere space. These two points are actually the vanishing 
points and can be characterized by a unit vector u

r
. Our 

idea consists in detecting the set of lines that correspond 
to a same vector u

r
. Given two catadioptric lines 

defined by 1n
ur

and 2n
uur

, their vanishing direction can be 
computed by 1 2u n n= ×

r ur uur
, as depicted in Figure 8. It 

means that for each pair of lines, a direction u
r

can be 
calculated. Therefore the goal is to detect the lines that 
have a similar direction. In [4], the authors argued that 
“if at least three lines have the same intersection points, 
they consider them as a bundle”. When we know the 
normals of two great circles, we can draw their 
corresponding conics in the image and then detect their 
two intersection points. However, their detections might 
be done independently (one intersecting point and then 
the other one) and thus if we project these two 
intersecting points in the sphere, there might not be 
antipodal points. Therefore, instead of computing the 
intersection in the image, we detect the intersection 
directly in the sphere which will impose the antipodal 
constraint. Concretely, noting N the number of detected 
lines after the merging step, we compute  

k i ju n n= ×
r ur uur

, where i=1..N, j>i 

We impose up-vector ( (3) 0ku >
r

) and unitary 
vector 1ku =

r
. Therefore each ku

r
belongs to a semi-

sphere (cf figure 9-a). This operation cost N(N-1)/2 
If at least K ku

r
 are similar then we consider that its 

associate normals, ie conics, are parallel. The similarity 
measure can be the same than in merging step. 
 
We have also worked on extracting dominant directions. 
Intuitively, dominant directions are those having a high 
number of similar directions. However, this technique 
cannot be directly applied. Indeed, let u be a direction 
which has many similar directions which correspond to a 
set S composed of these similar directions. Then any 
element of S might also be similar with many elements 
of the same set S. It means that we could find many 
dominant directions in a similar set and thus it will be 
hard to detect other main directions. Therefore we 
suggest the following idea. Let note {S} the set of all 
directions, u

r
the dominant direction (still unknown) 

iu
r

the direction which has the highest number of similar 
directions, l_d the list of these corresponding directions 
including iu

r
, l_n the list of all normal vectors 

composing l_d.  
Thus, we easily compute the main direction u

r
as 

mean( ). u l_d=
r

Then, in order to detect the second 
dominant direction, we perform the same method on the 

set {S} ={S-l_n}, ie the set of all directions except those 
whose any of the normal vectors belong to l_n. (cf Figure 
9 - b). It means that we remove the direction vectors 
whose corresponding line has already been detected as a 
dominant direction, since a line cannot have different 
orientations. 
 

 
Fig 9: Left (a): the set of all directions are projected on a 
semi-sphere. We can notice at least two dense regions, 
each one corresponding to a dominant direction. Right 
(b): detection of the 3 densest regions (red, green, blue). 
 

 
Figure 10: the set of parallel lines corresponding to the 
most dominant direction 

 

 
Figure 11: the set of parallel lines corresponding to the 
three most dominant directions. The line color 
corresponds to the region color in figure 9-b. 



 
V. CONCLUSION 

This paper deals with the problem of parallel line 
extraction in catadioptric images. We have presented an 
algorithm that runs fully automatically with even one 
single image and that does not require any knowledge 
about the scene. We have also explained how to extract 
dominant directions. Finally, we have enhanced many 
implementation issues so that even non-experts in 
computer vision could implement the proposed algorithm 
easily. Near future works will be dedicated to the 
application of parallel lines extraction for various tasks, 
especially road extraction and 3D reconstruction.   
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ANNEXE 
 
Annexe 1: Projection on the sphere 

OpPsPi is obviously a line. Thus ipsp POPO λ=  

In distance point of view: ipsp POPO λ= , ie 

22 )( ϕξλλ ++== DPm  
The only variable that we do not know is m so let’s 
compute it. 
In triangle OpPcPs, by using Al-Kashi’s theorem: 

ϕξξ cos2222 mmR −+=  

In triangle OpIPi, we have
P
ϕξϕ +

=cos  where 

22 )( ϕξ ++= DP by Pythagoras 
 

P
mmR ϕξξξ +

−+= 2222  

0)()(2 222 =−++− RPmPm ξϕξξ  
This is a second order equation 
 
First coefficient is positive, second is negative, third is 
negative (since R<ξ ) 

)()( 22222 RP −−+=Δ ξϕξξ  

P
RP

m
)()()( 22222 −−+++

=
ξϕξξϕξξ

 

 
By Thales in triangle OpP’Ps or trigonometry, 
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−
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=− )cos( θπ , ie 
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Thus 
RPR

m ξϕξθ +
+

−=
)(cos  

Where 

P
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m
)()()( 22222 −−+++

=
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We can use this previous relation or manipulate it in 
order to obtain the paper’s version. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=+

+
−=

PR
mP

R
P

PRPR
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2

2

ϕξξξϕξθ

 
Let 1R =  and use the expression of m. 

( )2 2 2 2 2 2 2
2

1cos ( ) ( ) ( ) ( 1 )P P
P

θ ξ ξ ξ ϕ ξ ϕ ξ ξ ϕ ξ= − + + + + − −

 

( )2 2 2 2 2 2
2

1cos ( ) ( ) ( ) ( 1)P P
P

θ ξ ξ ξ ϕ ξ ϕ ξ ξ ϕ ξ= − + + + + − −

 
 
By noting that 222 )( ϕξ ++= DP , we finally obtain 

( )2 2 2 2
2

1cos ( ) ( ) (1 )D D
P

θ ξ ξ ϕ ξ ϕ ξ= − + + + −
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