
Automatic Extraction of Parallel lines in
Catadioptric Images

Jean-Charles Bazin, In So Kweon
Robotics and Computer Vision Laboratory, KAIST

Daejeon, KOREA
jcbazin@rcv.kaist.ac.kr iskweon@kaist.ac.kr

Abstract – Extracting parallel lines in images is an
important step for many robotic tasks, such as road
extraction, camera calibration, 3D reconstruction,
etc… Moreover, nowadays, most of robots use
catadioptric cameras since they provide a much wider
field of view compared to traditional perspective
cameras. Therefore, in this paper, we aim to develop
an algorithm which automatically extracts parallel
lines in single catadioptric images. We also provide
many details concerning implementation issues so
that our method can be easily used by researchers
from different departments.

I. INTRODUCTION

Parallel lines are often considered as an important tool
for many robotic applications, such as road extraction [8],
camera calibration [7], 3D reconstruction [7], etc…
Unfortunately, automatically extracting parallel lines is
not an easy task. Moreover, most of these works are
based on traditional perspective cameras although
today’s robots are frequently equipped with a
catadioptric camera. Contrary to conventional cameras,
catadioptric cameras provide a much wider field of view
which permits to obtain much more information from the
environment and this is one of the main reasons why
they are broadly used nowadays. In this paper, we first
introduce catadioptric projection and we remind our
previous work concerning catadioptric line extraction.
Then we present our algorithm for automatic extraction
of bundles of parallel lines in single catadioptric images
and finally we show some results. This paper provides
much information concerning implementation issues so
that researchers whose major is not computer vision can
easily implement the proposed algorithm.

II. CATADIOPTRIC VISION AND PROJECTION

A. General information
Intuitively, the wider the field of view is, the more
information we can gather from the environment.

Obviously, an imaging system that might see “in all
direction” (cf Figure 1) could gather, for example, not
only a higher number of parallel lines but also lines in
different directions. Such sensors are simply called
“omnidirectional systems”. Catadioptric cameras are a
specific kind of omnidirectional systems. They are
devices which use both mirrors (catadioptric elements)
and lenses (dioptric elements) to form images through a
conventional camera. Such systems usually have a field
of view greater than 180 degrees and are getting both
cheaper and more effective. Whereas they have long
been used in telescopes (to focus light from stars onto the
eye of the observer), only recently they gained in
popularity together with other omnidirectional vision
systems based on fish-eye lenses or clusters of outwards-
looking cameras.

Figure 1: compared to traditional cameras (left),
catadioptric systems (right) can gather much more
information from the environment, such as a higher
number of parallel lines that also lie in different
directions.

B. Sphere projection theorem
In [1], Geyer and Daniilidis have introduced the
equivalent sphere theorem: a central catadioptric image
formation is equivalent to a two step mapping via a
sphere (cf Figure 2). First a point Xw in 3D world is
projected to a unit sphere at Xs with respect to the single
effective viewpoint O, then the point Xs on the sphere is
perceptively projected to the image plane at m from a
particular point Oc, obtained by calibration. This point m
would have been the same if we had performed the

traditional catadioptric projection, meaning on the mirror
and then on the image plane. This theorem not only
permits to generalize all catadioptric projections
(parabolic, hyperboloid) but also has strong implications
in line detection, as show in the following sections.

Fig.2: by sphere projection theorem, a line L in space is
projected to a great circle Ls on the sphere, which then
projected to a conic section CL on the image plane from
Oc, obtained by calibration (cf text for details).

C. Sphere projection equations
We suggest working in the sphere space, instead of the
catadioptric image plane, for various reasons: taking the
special distortions into account, generalizing the method
for all catadioptric systems, simple neighborhood
definition, etc… Therefore, the catadioptric image must
be projected on this new space. Whereas it is an
important step in catadioptric vision, the equation
projections are either given with no derivations [5] or
require specific knowledge in computer vision [9]. By
using notations of figure 2, an image point P can be
projected into a sphere point Ps as explained below (for
derivations details, see appendix A1, based on [5]).

(,) (sin cos ,sin sin ,cos)sP x y P θ φ θ φ θ= → =

First the image point P is converted to Pi in camera
frame coordinates [7]:

()0' / ux x u a= −

()0' / vy y v a= −

Where (u0,v0) is the camera center and (au,av) the focal
length in horizontal and vertical directions (details in [7]).
Then we project this new point Pi into the sphere point
Ps, based on spherical coordinates with parameters φ
andθ :

[], 2 (', ')D cart pol x yφ =

()2 2 2 2
2

1acos () () (1)D D
d

θ ξ ξ ϕ ξ ϕ ξ⎛ ⎞= − + + + −⎜ ⎟
⎝ ⎠

Where
22 2 2()p id O P D ξ ϕ= = + + and parameters

ξ and ϕ are depicted on figure 3. The calibration
parameters (u0, v0, au, av, ξ and ϕ) can be easily

obtained by the toolbox [6].

Fig 3: an image point Pi can be projected into the sphere

at Ps and reciprocally

III. LINE EXTRACTION

In [3], we have introduced a method to extract lines in
catadioptric images. We remind this algorithm for many
reasons: convenience of the readers, explaining the
parallel lines extraction method more clearly, and
providing important information for an easy and efficient
implementation.

A. General Framework
As explained, a line in space is projected as a great circle
on the sphere. Let “associated plane” be the plane that
goes through the sphere center O and the given great
circle. Thus, each great circle can be characterized by the
normal of its associated plane. The goal of the algorithm
is to find the normal vectors. It is composed of five main
steps as depicted in Figure 4 and is an extension of the
polygonal approximation approach for perspective
cameras towards catadioptric vision.

Figure 4: framework of our line extraction algorithm

L

Ls

Step 1 consists in detecting edges, typically by Canny
Edge operator on the catadioptric images. Step 2, edge
chaining, permits to link the connected edge points into
chains by [10]. At step 3, each edge is projected on the
sphere using projection equations. Instead of computing
the projections at each frame, which is very time
consuming, we suggest using a LookUp table that saves
the correspondences between the image pixels and the
sphere coordinates.

A. Splitting Step
The splitting step is the most important one: for each
edge chain, we test whether it verifies the great circle
constraint. If it does not, the edge chain is split until the
great circle constraint is verified or the chain length is
too small.
Let n=(a,b,c) be the normal vector of a great circle. Thus
its plane equation is 0ax by cz+ + =

.
A point

(), ,s s sx y z verifies the great circle constraint
if ()s s sabs ax by cz DistThresh+ + < . Formally and
in an implementation point of view, we apply the
following function (Fig 5) for each edge chain:

Fig 5: pseudo-code for line splitting

Fig 6: typical result after line splitting

The final output of the LineDetection function is a list of
normal vectors whose associated edge chain points verify
the great circle constraint, ie they belong to a line. For
readers information, we have used LengthTresh=50 and
DistThresh=0.004.

B. Merging Step
During the edge detection step, a 3D line might not be
continuously detected as an edge. For example, a side of
a building can be partially occluded by a tree. Thus this
line may be divided into two or many edge parts during
edge detection step and thus the splitting step will
compute one great circle (ie normal vector) for each edge
part. Thus the idea is to simply merge the similar normal
vectors. Two normal vectors ni and nj are said similar if:

()acos .
T

i jn n AngleThresh<
ur uur

Depending on the testing order, different results might be
obtained. That is why we had also suggested using a
graph approach and compute the new normal vectors
using all the points of similar normals by Singular Value
Decomposition.

Fig 7: typical result after line merging

Fig 8: the direction of two parallel lines corresponds to
the cross product of the normal vectors of their
associated planes ([2],[4]).

IV. PARALLEL LINES EXTRACTION

Now that we have detected lines, the goal is to extract
the parallel lines. As explained in [2], a set of world
parallel lines intersect in two antipodal points in the
sphere space. These two points are actually the vanishing
points and can be characterized by a unit vector u

r
. Our

idea consists in detecting the set of lines that correspond
to a same vector u

r
. Given two catadioptric lines

defined by 1n
ur

and 2n
uur

, their vanishing direction can be
computed by 1 2u n n= ×

r ur uur
, as depicted in Figure 8. It

means that for each pair of lines, a direction u
r

can be
calculated. Therefore the goal is to detect the lines that
have a similar direction. In [4], the authors argued that
“if at least three lines have the same intersection points,
they consider them as a bundle”. When we know the
normals of two great circles, we can draw their
corresponding conics in the image and then detect their
two intersection points. However, their detections might
be done independently (one intersecting point and then
the other one) and thus if we project these two
intersecting points in the sphere, there might not be
antipodal points. Therefore, instead of computing the
intersection in the image, we detect the intersection
directly in the sphere which will impose the antipodal
constraint. Concretely, noting N the number of detected
lines after the merging step, we compute

k i ju n n= ×
r ur uur

, where i=1..N, j>i

We impose up-vector ((3) 0ku >
r

) and unitary
vector 1ku =

r
. Therefore each ku

r
belongs to a semi-

sphere (cf figure 9-a). This operation cost N(N-1)/2
If at least K ku

r
 are similar then we consider that its

associate normals, ie conics, are parallel. The similarity
measure can be the same than in merging step.

We have also worked on extracting dominant directions.
Intuitively, dominant directions are those having a high
number of similar directions. However, this technique
cannot be directly applied. Indeed, let u be a direction
which has many similar directions which correspond to a
set S composed of these similar directions. Then any
element of S might also be similar with many elements
of the same set S. It means that we could find many
dominant directions in a similar set and thus it will be
hard to detect other main directions. Therefore we
suggest the following idea. Let note {S} the set of all
directions, u

r
the dominant direction (still unknown)

iu
r

the direction which has the highest number of similar
directions, l_d the list of these corresponding directions
including iu

r
, l_n the list of all normal vectors

composing l_d.
Thus, we easily compute the main direction u

r
as

mean(). u l_d=
r

Then, in order to detect the second
dominant direction, we perform the same method on the

set {S} ={S-l_n}, ie the set of all directions except those
whose any of the normal vectors belong to l_n. (cf Figure
9 - b). It means that we remove the direction vectors
whose corresponding line has already been detected as a
dominant direction, since a line cannot have different
orientations.

Fig 9: Left (a): the set of all directions are projected on a
semi-sphere. We can notice at least two dense regions,
each one corresponding to a dominant direction. Right
(b): detection of the 3 densest regions (red, green, blue).

Figure 10: the set of parallel lines corresponding to the
most dominant direction

Figure 11: the set of parallel lines corresponding to the
three most dominant directions. The line color
corresponds to the region color in figure 9-b.

V. CONCLUSION

This paper deals with the problem of parallel line
extraction in catadioptric images. We have presented an
algorithm that runs fully automatically with even one
single image and that does not require any knowledge
about the scene. We have also explained how to extract
dominant directions. Finally, we have enhanced many
implementation issues so that even non-experts in
computer vision could implement the proposed algorithm
easily. Near future works will be dedicated to the
application of parallel lines extraction for various tasks,
especially road extraction and 3D reconstruction.

ACKNOWLEDGMENT
This work has been possible thanks to our international
collaboration with Pascal Vasseur and Cedric
Demonceaux, CREA – France

ANNEXE

Annexe 1: Projection on the sphere

OpPsPi is obviously a line. Thus ipsp POPO λ=

In distance point of view: ipsp POPO λ= , ie

22)(ϕξλλ ++== DPm
The only variable that we do not know is m so let’s
compute it.
In triangle OpPcPs, by using Al-Kashi’s theorem:

ϕξξ cos2222 mmR −+=

In triangle OpIPi, we have
P
ϕξϕ +

=cos where

22)(ϕξ ++= DP by Pythagoras

P
mmR ϕξξξ +

−+= 2222

0)()(2 222 =−++− RPmPm ξϕξξ
This is a second order equation

First coefficient is positive, second is negative, third is
negative (since R<ξ)

)()(22222 RP −−+=Δ ξϕξξ

P
RP

m
)()()(22222 −−+++

=
ξϕξξϕξξ

By Thales in triangle OpP’Ps or trigonometry,

ϕξ

ξ
+
+

=
l

P
m

ie ξϕξ
−

+
=

P
ml)(

R
l

=−)cos(θπ , ie
R
l

−=θcos

Thus
RPR

m ξϕξθ +
+

−=
)(cos

Where

P
RP

m
)()()(22222 −−+++

=
ξϕξξϕξξ

We can use this previous relation or manipulate it in
order to obtain the paper’s version.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−=+

+
−=

PR
mP

R
P

PRPR
m)(1)(cos

2

2

ϕξξξϕξθ

Let 1R = and use the expression of m.

()2 2 2 2 2 2 2
2

1cos () () () (1)P P
P

θ ξ ξ ξ ϕ ξ ϕ ξ ξ ϕ ξ= − + + + + − −

()2 2 2 2 2 2
2

1cos () () () (1)P P
P

θ ξ ξ ξ ϕ ξ ϕ ξ ξ ϕ ξ= − + + + + − −

By noting that 222)(ϕξ ++= DP , we finally obtain

()2 2 2 2
2

1cos () () (1)D D
P

θ ξ ξ ϕ ξ ϕ ξ= − + + + −

REFERENCES

[1] C. Geyer and K. Daniilidis, “a unifying theory for

central panoramic systems and practical
implications”, ECCV, pp.445-462, 2000.

[2] C. Geyer and K. Daniilidis, “Catadioptric camera
calibration”, Proceedings of 7th International
Conference on Computer Vision (ICCV), Vol. 1, pp.
398-404, 1999.

[3] J.C. Bazin, C. Demonceaux, P. Vasseur, “Fast
Central Catadioptric Line Extraction”, Iberian
Pattern Recognition and Image Analysis (IbPRIA),
2007.

[4] C. Demonceaux and P. Vasseur “UAV Attitude
Computation by Omnidirectional Vision in Urban
Environment”, International Conference on
Robotics and Automation (ICRA), 2007.

[5] C. Demonceaux, P. Vasseur, "UAV Attitude
Computation by Central Catadioptric Vision
",15ème Congrès de Reconnaissance des Formes et
Intelligence Artificielle (RFIA), 2006.

[6] C. Mei, open-source calibration toolbox for
catadioptric cameras: http://www-sop.inria.fr/icare/

personnel/Christopher.Mei/Toolbox.html
[7] R. Hartley and A. Zisserman. “Multiple View

Geometry in Computer Vision”, Cambridge
University Press, second edition, 2004.

[8] Massimo Bertozzi and Alberto Broggi, GOLD: a
Parallel Real-Time Stereo Vision System for
Generic Obstacle and Lane Detection, IEEE
Transactions on Image Processing, 7(1):62-81, 1998.

[9] J.P. Barreto, “General Central Projection Systems:
Modelling, Calibration and Visual Servoing”, PhD
Thesis, University of Coimbra, 2003.

[10] P. D. Kovesi. MATLAB and Octave Functions
for Computer Vision and Image Processing, School
of Computer Science & Software Engineering, The
University of Western Australia. Available from:
http://www.csse.uwa.edu.au/~pk/research/matlabfns

