지면 효과를 갖는 3차원 날개의 유동해석

Flow Analysis of Three-Dimensional Wing in Ground Effect

임 예훈(KIMM), *강 근식(KAIST)
Ye-Hoon Im, Keun-Shik Chang

Ground effect of three-dimensional wing is studied. LU-factored Implicit upwind TVD scheme and Baldwin-Lomax turbulence model are used for this calculation. To investigate ground effect, NACA 4415 wing at M=0.5 calculated. Two different angles of attack and three cases of flight height are calculated. As increasing angle of attack, the ground effect becomes strong. In case of NACA 4415 wing in ground effect, strength of wing tip vortex becomes stronger than that of free flight.

1. 서론
항공기의 지면 가까이 비행하면 공기의 흐름이 지면에 의해 제한을 받게 되어 흐름의 형태가 변하게 된다. 즉 올러와류(Upwash), 내리향류(Downwash), 날개끝 외류(Tip vortex) 등이 감소하게 되고 피징 모멘트와 양력이 증가하고 유휴량이 감소하게 되는데 이러한 현상을 지면 효과(ground effect)라 한다. 지면 효과를 이용한 WIG선은 항공기처럼 운항으로지지상승할 필요가 없기 때문에 경제적이고 경제적이고 경제적이고 경제적이고 경제적이라고 평가할 수 있으므로 빠르게 확산될 수 있다. 또한 환경 등에 부담이 없는 특수지역에 많은 투자가 할 필요가 없다. 이러한 장점은 가전 WIG선은 군사, 운송, 해상, 수영 이적목 우주선 등 다양한 용도로 활용 될 수 있어 러시아[1], 독일[2,3], 일본[4], 중국[5] 등에서 연구가 활발히 진행되고 있으며 국내에서도 이와 연계하여 WIG선 주요 기유동 해석을 위한 다양한 연구가 이루어졌다. 특히 저자를들은 아름다운 날개 유동영역에서 지면효과를 갖는 2차원 에어로foil의 특성에 대한 연구[6]에서부터 파형 구면 위용 비행하는 WIG 에어로foil의 비정상 양측성 유동[7] 지면 효과를 갖는 적절 에어로foil 주위의 유동[8] 등 광범위한 WIG 에어로foil 주위의 유동을 해석하였다. 한편 지면 효과는 3차원 유동 구조에 의해 큰 영향을 받기 때문에 지면효과를 보다 정확하게 규명하기 위해서는 3차원 유동에 대한 연구가 필요하다. 따라서 본 연구에서는 지름까지의 2차원 유동해석에서 한층 더 발전한 3차원 유동장으로 연구 범위를 확대하였다. 본 연구에서는 M=0.5, α=2°, 4°, h=0.15, 0.3, free flight인 유동 조건에서 비행하는 NACA 4415 날개 주위의 양측성 양류 유동장을 해석하고 공력 계수의 변화, 날개끝 vortex의 변화 등을 살펴보았으며 지면 효과를 갖게 될 때 나타나는 공기역학 현상들에 대해 논의하였다.

2. 지배방정식 및 수치 기법
2.1 지배방정식
3차원 Navier-Stokes 방정식을 계산 영역에서 쓰면 다음과 같다. 여기서

\[\frac{\partial \mathbf{u}}{\partial t} + \nabla \cdot (\mathbf{u} \mathbf{u}) = -\nabla p + \nabla \cdot \tau + \mathbf{f} \]

\[\nabla \cdot \mathbf{u} = 0 \]

\[\mathbf{f} = \frac{1}{2} \left(\rho \mathbf{u} \right) + \frac{1}{2} \left(\rho \mathbf{u} \right) \times \mathbf{r} \]

\[\mathbf{r} = \frac{1}{2} \left(\mathbf{u} \times \mathbf{u} \right) \]

\[\mathbf{j} = \text{Jacobian 벡터}, \mathbf{Q}는 유동 변수 벡터, E, F, G는 3차원 유속 벡터, Eω, Fω, Gω는 점성 유속 벡터이다.

1) 한국기계연구원 바이오스 자체분리터 사업단 대전광역시 유성구 장동 171. 042-868-7357
2) 한국과학기술원 항공우주공학과(305-701) 대전광역시 유성구 구성동 373-1. 042-869-3711
2.2 수치 기법

3. 계산 결과

지면 효과를 갖는 3차원 날개 주위의 유동장을 계산하기 위해 NACA 4415 에어포일을 기본으로 하여 가로세로비가 3.1인 사각 날개를 형성하였다. 날개의 끝은 스펙 길이의 3%를 연장하여 벽기형태로 마무리하였다. 격자계는 131*34*46*2의 H형 격자계를 사용하였다. 마하수 0.5, 레이놀즈수 2.1*10^6, 반응각 2.0도~4.0도, 지면에서 높이가 0.15, 0.3, free flight의 유동 조건에 대해 계산하였다.

3-1. Case 1 : 반응각 2.0도

반응각이 2.0도 일 때 free flight인 경우와 지면에서 높이가 각각 h=0.15, 0.3인 경우에 대해 계산하였다. Table 1에는 양력계수, 항력계수가 나타나 있다. Cf는 free flight인 경우 0.399에서 h=0.15인 경우 0.441로 10%정도 증가하였고 Cd는 미세하게 감소하여 양방향비는 12.1에서 17.0으로 증가하였다. Jacob[2]은 비행 마하수 0.17, Re=2.1*10^6, 에어포일 코드의 1/4 지점에서 지면까지의 거리가 0.335일 경우에 대해 실험을 수행하고 패널법 계산과 비교하였다. 반응각이 2도인 경우 웅돌에서 지면까지의 거리는 0.309가 되며, Jacob의 실험 결과에 압축성 효과를 보정해 주면 Cf=0.42가 된다. 이는 본 연구에서 h=0.3일 때 계산된 양력 계수의 값과 비교적 잘 일치함을 볼 수 있다. Fig. 1에는 h=0.15일 때 날개 표면과 유동장의 동역학 선태가 나타나 있다. 날개끝에서는 아리연과 웅돌의 양력차이 때문에 발생하는 날개끝 외류를 관찰할 수 있다. Fig. 2는 동하수 선도이다. 날개 표면에서는 속도가 0이므로 isoline들이 하나도 존재하지 않는다. 날개끝에서는 날개

<table>
<thead>
<tr>
<th></th>
<th>Cf</th>
<th>Cd</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>a=2.0°</td>
<td>free flight 0.399 0.033 12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h=0.3 0.432 0.030 14.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>h=0.15 0.441 0.026 17.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Aerodynamic coefficients of NACA 4415 Wing

Fig. 1. Pressure contours of NACA 4415 Wing (M=0.5, Re=2.1*10^6, a=2°, h=0.15)
Fig. 2. Mach number contours of NACA 4415 Wing (M=0.5, Re=2.1*10^6, a=2°, h=0.15)
코드 방향으로 갈수록 경계층이 성장하는 것을 관찰할 수 있으며, 왼쪽 날개끝 와류가 형성되는 것도 관찰할 수 있다. 날개 바로 왼쪽부분에서는 날개의 왼쪽 부분에서 생성된 경계층과 아래쪽부분에서 생성된 경계층이 합쳐져서 나타나나 날개에서 멀어질수록 두 부분으로 나누어지는 것을 관찰할 수 있다. Fig. 3에는 free flight일 때의, Fig. 4에서는 h=0.15일 때의 날개의 단면과 후류 지역에서의 stream line들이 나타나 있다. Fig. 3과 Fig. 4를 비교해 보면 날개 아래쪽의 지면의 존재로 인해 stream line의 형상이 현저히 다른 모습을 보이고 있음을 알 수 있다. Fig. 3과 4의 (a)에는 날개의 75% 지점에서의 stream line이다. free flight인 경우 vortex의 크기가 코드길이의 약 0.8배 정도이나 지면이 있는 경우 vortex의 크기는 급격히 증가하여 코드길이의 약 3.5배 이상의 크기가 된다. Fig. 3과 4의 (b)에는 x=2.0에서의 stream line이다. free flight인 경우 vortex의 모양이 거의 대칭에 가까운 형태이나 지면의 영향을 받는 경우 지면의 존재에 의해 전혀 상이한 모습을 보이고 있다. vortex의 크기는 후류 방향으로 갈수록 성장한다. Fig. 5는 날개 스펙터의 20%, 70% 지점에서의 압력계수곡선이다. 날개의 아래면에서의 압력계수는 거의 일정하나 위면에서는 날개 끝쪽으로 갈수록 압력계수의 절대값은 감소한다. 이는 날개의 아래면과 위면의 압력차이를 감소시킴에 의해 날개끝에서 발생하는 날개끝 와류에 의한 영향이다. 지면의 존재로 인해 날개 아랫면, 앞전에서 약 25%지점까지 압력이 자유 비행일 때 보다 증가하는 것을 볼 수 있다. 그 외 지역에서는 지면효과를 가질 때와 자유 비행일 때와 큰 차이는 없다.

Fig. 3. Stream line at wing tip(M=0.5, Re=2.1*10^6, α=2°, free flight) (a)x=0.75, (b)x=2.0
Fig. 4. Stream line at wing tip(M=0.5, Re=2.1*10^6, α=2°, h=0.15) (a)x=0.75, (b)x=2.0
Fig. 5. Distribution of pressure coefficient at different section of NACA 4415 wing ($M=0.5$, $Re=2.1\times10^6$, $a=2^\circ$) (a) $z/c=20\%$, (b) $z/c=70\%$

3-2. Case 2: 반응각 4.0도

반응각을 2.0도 증가시켜 반응각이 4.0도인 경우에 대해 해석하였다. Table 2에는 공력계수 값들의 변화가 나타나 있다. Case 1의 경우와 마찬가지로 지면에 가까워질수록 압력계수는 증가하고 항력계수는 감소하여 양방향이 증가하는 것을 관찰할 수 있다. Fig. 6에는 원반 에서의 전압력에 대한 날개 후류 지역에서의 전압력비 (P_d/P_c)가 나타나 있다. 날개 상에서는 vortex가 약해져 경계층 지역 외에는 주로발발한 전압력의 손실이 없어서 나타내지 않았다.

<table>
<thead>
<tr>
<th>$\alpha=4.0^\circ$</th>
<th>C_l</th>
<th>C_d</th>
<th>L/D</th>
</tr>
</thead>
<tbody>
<tr>
<td>free flight</td>
<td>0.537</td>
<td>0.042</td>
<td>12.8</td>
</tr>
<tr>
<td>$h=0.3$</td>
<td>0.603</td>
<td>0.039</td>
<td>15.5</td>
</tr>
<tr>
<td>$h=0.15$</td>
<td>0.662</td>
<td>0.037</td>
<td>17.9</td>
</tr>
</tbody>
</table>

Table 2. Aerodynamic coefficients of NACA 4415 Wing

Fig. 6 (a)에는 free flight인 경우 Fig. 7 (a)에는 $h=0.15$의 날개의 바로 끝 부분인 $x=1.0$에서의 전압력이 본이다. 이 지역에서는 경계층내의 점성에 의한 손실이 vortex에 의한 손실보다 크다. Fig. 6 (b)와 Fig. 7 (b)에는 $x=2.5$의 전압력비가 나타나 있다. 이 지역에서는 경계층내의 점성에 의한 전압력의 손실보다는 vortex에 의한 전 압력의 손실이 우세하다. 경계층은 2부로 나누어지는데, 앞쪽 부분은 날개의 윗면에서 발생한 후류이며 뒷부분은 날개의 아래면에서 성장한 후류이다. vortex의 크기는 후류로 갈수록 증가하지만 경도는 약화되는 것을 관찰할 수 있다. free flight인 경우 vortex core에서의 전압력비는 0.930이지만 $h=0.15$의 경우 전압력비는 0.913으로 지면에 가까워질수록 압력 손실이 증가한다. 이는 지면이 있을 경우 vortex의 강도가 더 강해짐을 의미한다. 지금까지 알려진 바에 의하면 지면이 있을 경우 vortex의 크기가 증가하면서 강도는 자유 비행일 때보다 더 약해진다고 알려져 있으나[10] NACA 4415 날개의 경우에는 계산 결과 정반대임이 밝혀졌다. 지면의 존재로 인해 날개 아래면의 압력이 더 늘어져서 날개 앞에서 vortex가 더 강해지려는 경향이 날개 아래 방향에서 날개 끝쪽으로의 호름 때문에 vortex의 크기가 증가하여 vortex 강도가 약해지려는 경향보다 더 강하게 전체적으로 vortex의 강도는 증가한다. Fig. 8에는 날개 스펙의 45%, 75% 지점에서의 압력계수곡선이다. 반응 각이 2도 인 경우 코드의 25%지점까지 지면효과에 의한 압력의 증가가 관찰되었으나 4도인 경우에는 코드 전 영역에 걸쳐 압력의 증가가 관찰되었다. 즉 반응각이 증가함에 따라 지
면 효과의 영향도 증가하였음을 의미한다. Fig. 9에는 vortex core의 위치가 나타나 있다. (a)에는 vortex core의 z 좌표가 나타나 있다. free flight인 경우 vortex core는 후류로 갈수록 날개 안쪽으로 흘러가는데 비해 지면효과가 있을 경우 vortex core는 날개 바깥쪽으로 흘러가는 것으로 관찰되었다. (b)에는 vortex core의 y좌표가 나타나 있다. free flight인 경우 후류로 갈수록 vortex core의 높이는 점점 더 높아지는데 반해 지면 효과 있을 경우에는 약간 증가하다가 일정한 높이를 계속 유지한다. 이러한 차이는 free flight인 경우 날개 후류 지역에서도 원방에서 일정한 방향을 가진 유동이 계속 유입되어 vortex core를 밀지면 지면에 있을 경우 지면에 의해 v방향 속도가 제한을 받기 때문에 일정한 높이를 유지한다.

Fig. 6. Total pressure ratio($P_n/P_∞$) at wing tip ($M=0.5$, $Re=2.1\times10^6$, $α=4°$, free flight) (a)$x=1.0$ (b)$x=2.5$

Fig. 7. Total pressure ratio($P_n/P_∞$) at wing tip ($M=0.5$, $Re=2.1\times10^6$, $α=4°$, $h=0.15$) (a)$x=1.0$ (b)$x=2.5$
Fig. 8. Distribution of pressure coefficient at different section of NACA 4415 wing (M=0.5, Re=2.1*10^6, δ=4°) (a) z/c=45% (b) z/c=85%

Fig. 9. Trajectories of vortex core (a) z vs. x, (b) y vs. x

4. 결론

지면효과를 갖는 NACA 4415 날개 주위의 압축성 난류 유동을 계산하였으며 다음과 같은 결과를 얻을 수 있었다.

첫째, 3차원 날개에서도 지면 효과에 의해 양향비가 증가하는 것을 관찰 할 수 있었다. 발음각이 작은 경우에는 날개 하단의 전방 부위에서만 압력의 증가가 관찰되었으나 발음각이 큰 경우에는 날개 하단 전 영역에 걸쳐 고르한 압력 증가를 보였으며 양향비 증가가 가속되는 것이 관찰되었다.

둘째, 일반적으로 3차원 날개가 지면효과를 가질 경우 vortex의 크기가 증가하면서 vortex 강도가 감소하는 것으로 알려져 있다. 그러나 NACA 4415 날개의 경우 본 계산에 의하면 지면효과에 의한 압력의 증가로 인한 vortex 강도의 증가가 vortex 크기의 증가로 인한 vortex 강도의 감소보다 커서 전체적인 wing tip vortex의 강도는 증가한다. 일반적인 날개에 대한 결론은 좀 더 다양한 형태의 날개에 대해 계산을 수행한 후 내려져야 할 것 같다.
셋째, vortex core의 평행을 자유 비행일 경우 후류 방향으로 갤수록 날개 안쪽으로 이동하되 높이가 증가하나, 지면 효과가 있을 경우 날개 바깥쪽으로 이동하되 높이가 증가하기에 일정 높이를 계속 유지한다.

참고문헌