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Abstract

The present paper is devoted to modeling methods for thermal analysis of microchannel heat sinks. The averaging approach presented
in earlier works for the case of constant surface heat flux is extended to the problems subject to the uniform wall temperature condition.
The solutions for velocity and temperature distributions are obtained by solving one-dimensional averaged governing equations without
resorting to a two-dimensional direct numerical simulation. General solutions for both high-aspect-ratio and low-aspect-ratio micro-
channel heat sinks are presented. Asymptotic solutions in high-aspect-ratio and low-aspect-ratio limits are also given in explicit form.
The solutions presented in the paper are validated by comparing them with the results of direct numerical simulation. The friction fac-
tors, Nusselt numbers and thermal resistances for microchannel heat sinks with a uniform base temperature are obtained from the
presented solutions. The effects of the aspect ratio and the porosity on the friction factor and the Nusselt number are presented. Finally,
characteristics of the thermal resistance of the microchannel heat sink are discussed.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in semiconductor technology have led
to the significant increase in power densities encountered
in microelectronic equipment [1,2]. Therefore, effective
cooling technology is essential for reliable operation of
electronic components [3,4]. Microchannel heat sinks have
received much attention due to their high potential for
cooling electronic devices. The concept of the microchannel
heat sink was first introduced by Tuckerman and Pease [5]
and is based on the fact that the heat transfer coefficient is
inversely proportional to the hydraulic diameter of the
channel. Since the emergence of this technology, a body
of research has been reported, as summarized in the exten-
sive reviews by Phillips [6] and by Goodling and Knight [7].

Many previous investigations have been concentrated
on compact modeling methods for the microchannel heat
sink. It is because direct numerical simulation requires te-
dious effort and large computation time. The simplest mod-
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eling method is to use a fin model [8,9]. The fin model is
commonly used due to its simplicity [10], but it was recently
confirmed that the fin model may produce errors in predict-
ing the thermal resistance when the aspect ratio of the
microchannel is high [11,12]. As an alternative, Koh and
Colony [13] suggested a model based on an averaging
approach. In this model, the microchannel heat sink is
modeled as a fluid-saturated porous medium, which is fre-
quently termed the porous-medium approach. Mathemati-
cally, this is equivalent to averaging the velocity and
temperature distributions in the direction perpendicular
to the flow direction. This approach was applied to the
microchannel heat sink by Tien and Kuo [14] and later ex-
tended by Kim and his coworkers [15–17]. Analytic solu-
tions suggested by Kim and his coworkers are shown to
be in close agreement with numerical solutions and their
model predicts the thermal resistance accurately.

Even though the model based on the averaging ap-
proach for predicting the thermal resistance has been sug-
gested, it has focused only on the uniform wall heat flux
condition. Hence, it could not be used to delineate fluid-
flow and heat-transfer characteristics of the microchannel

mailto:sungjinkim@kaist.ac.kr


Nomenclature

a wetted area per volume
c heat capacity of fluid
Da Darcy number
Dh hydraulic diameter of the channel (2wcH/

(wc + H))
f friction factor
h interstitial heat transfer coefficient based on

one-dimensional bulk mean temperature
hl interstitial heat transfer coefficient
H channel height
k thermal conductivity
K permeability
L length of heat sink
Nu Nusselt number
p pressure
P dimensionless pressure
Pe Peclet number
q heat transfer rate
q00 heat flux (q/WL)
_Q flow rate
Re Reynolds number
Rh total thermal resistance
T temperature
u velocity
U dimensionless velocity
wc channel width
ww fin thickness
W width of heat sink
x,y,z Cartesian coordinate system
X,Y,Z dimensionless Cartesian coordinate system

(Y = y/H, Z = z/(wc + ww))

h if averaged value over the fluid region
h is averaged value over the solid region
hTib,f one-dimensional bulk mean temperature for the

fluid phase

Greek symbols

as aspect ratio of the microchannel (H/wc)
e porosity (wc/(wc + ww))
k dimensionless eigenvalue
l viscosity
h dimensionless temperature
q density

Subscripts

bm bulk mean
e effective
f fluid
high for high-aspect-ratio microchannel heat sinks

(as > 1)
H5 exponential axial wall heat flux condition
in inlet
low for low-aspect-ratio microchannel heat sinks

(as < 1)
m mean
out outlet
s solid
w wall
y averaging direction: y
z averaging direction: z
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heat sink subject to the uniform surface temperature condi-
tion. However, the base wall of the microchannel heat sink
becomes nearly isothermal when it is thick enough to elim-
inate hot spots or it is attached to a heat spreader such as
a vapor chamber and a micro heat pipe [18]. Therefore, it
is highly desirable to develop an appropriate mathematical
model for analyzing heat transfer from a microchannel
heat sink subject to the constant wall temperature con-
dition.

The present study is devoted to overcoming the limita-
tion stated above by extending the previous works [15–
17] to the problems for the uniform wall temperature
condition. The present study deals with a modeling method
based on an averaging approach for thermal analysis
of microchannel heat sinks subject to the uniform wall
temperature condition. General solutions for both high-
aspect-ratio and low-aspect-ratio microchannel heat sinks
are presented. Asymptotic solutions in high-aspect-ratio
and low-aspect-ratio limits are given in explicit form by
using the scale analysis. In order to validate the proposed
solutions, velocity and temperature distributions obtained
from the general solutions and the asymptotic solutions
are compared with results from two-dimensional direct
numerical simulation. The friction factors, Nusselt num-
bers and thermal resistances for microchannel heat sinks
with a uniform base temperature are obtained from the
presented solutions. The effects of the aspect ratio and
the porosity on the friction factor and the Nusselt number
are investigated. Finally, characteristics of the thermal
resistance of the microchannel heat sink are discussed.

2. Mathematical formulation by using averaging approach

2.1. Problem description

The problem under consideration in the present paper
concerns forced convection through a microchannel heat
sink. Schematic diagrams of the microchannel heat sink
are shown in Fig. 1. The direction of fluid flow is parallel
to x. The top surface is insulated and the bottom surface
is isothermal. A coolant passes through microchannels
and it takes heat away from the heat dissipating electronic



Fig. 1. Schematic diagrams of microchannel heat sinks: (a) high-aspect-ratio microchannel heat sink (as > 1) and (b) low-aspect-ratio microchannel heat
sink (as < 1).
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component attached below. In analyzing the problem, for
simplicity, the flow is assumed to be laminar, incompress-
ible, and both hydrodynamically and thermally fully-devel-
oped. All the thermophysical properties are assumed to be
constant. In addition, the pumping power, i.e., the power
required to drive the fluid through the microchannels, is as-
sumed to be constant.
2.2. General solutions

2.2.1. General solutions for high-aspect-ratio microchannel

heat sinks

The momentum and energy equations are given as
follows:

op
ox

¼ l
o
2u
oy2

þ o
2u
oz2

� �
ð1Þ

qc
oðuT Þ
ox

¼ k
o2T
oy2

þ o2T
oz2

� �
ð2Þ
In the averaging approach, averaged velocity and tempera-
ture are used. The averaged quantities over the fluid and
solid phases are defined, respectively, as follows:

h/ifz ¼
1

wc

Z wc

0

/dz; h/isz ¼
1

ww

Z wwþwc

wc

/dz ð3Þ

The governing equations for averaged velocity and temper-
ature are established by averaging Eqs. (1) and (2) in the z
direction. Integrating Eq. (1) over the fluid region yields

ohpifz
ox

¼ lf

o
2huifz
oy2

� lf

Khigh

ehuifz ð4Þ

Similarly, averaging Eq. (2) over the fluid region produces

eqfcf
ohuT ifz
ox

¼ o

oy
kfe;high

ohT ifz
oy

 !
þ hl;highahighðhT isz � hT ifzÞ

ð5Þ
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and the energy equation for the solid region becomes

o

oy
kse;high

ohT isz
oy

� �
¼ hl;highahighðhT isz � hT ifzÞ ð6Þ

where e, a, kfe, kse, K, and hl are porosity, wetted area per
volume, effective conductivity of the fluid, effective conduc-
tivity of the solid, permeability, and interstitial heat trans-
fer coefficient, respectively. The subscript high is used to
distinguish this case from the case of low-aspect-ratio
microchannel heat sinks.

e ¼ wc

ww þ wc

; ahigh ¼
2

ww þ wc

;

kse;high ¼ ð1� eÞks; kfe;high ¼ ekf ð7Þ

Khigh ¼ �ewchuifz
ou
oz

����
z¼wc

� ou
oz

����
z¼0

 !�1

ð8Þ

hl;high ¼
kf
2

oT
oz

����
z¼wc

� oT
oz

����
z¼0

 !
� ðhT isz � hT ifzÞ

�1 ð9Þ

In order to treat the averaged quantities for a product of
temperature and velocity huT ifz involved in Eq. (5), it is use-
ful to define the one-dimensional bulk mean temperature
for the fluid phase as

hT ib;fz ¼
R wc

0 TudzR wc

0 udz
ð10Þ

By using the one-dimensional bulk mean temperature, Eqs.
(5) and (6) can be rewritten as follows:

eqfcfhui
f
z

ohT ib;fz

ox

¼ o

oy
kfe;high

ohT ib;fz

oy

 !
þ hhighahighðhT isz � hT ib;fz Þ ð11Þ

o

oy
kse;high

ohT isz
oy

� �
¼ hhighahighðhT isz � hT ib;fz Þ ð12Þ

where h is the interstitial heat transfer coefficient based on
one-dimensional bulk mean temperature.

hhigh ¼
kf
2

oT
oz

����
z¼wc

� oT
oz

����
z¼0

 !
� ðhT isz � hT ib;fz Þ�1 ð13Þ

When the flow is thermally fully-developed, it follows that
[19]

o

ox
T w � hT ib;fz

T w � T bm

 !
¼ o

ox
T w � hT isz
T w � T bm

� �
¼ 0 ð14Þ

Eq. (14) implies that the relative shape of the temperature
profile does not change with x. This equation can be simpli-
fied for the conditions of constant surface heat flux and
constant surface temperature. For the case of constant sur-
face heat flux, it follows from Eq. (14) that

ohT ib;fz

ox
¼ ohT isz

ox
¼ dT bm

dx
ð15Þ
For the case of constant surface temperature, it also fol-
lows from Eq. (14) that

o
ox hT i

b;f
z

T w � hT ib;fz

¼
o
ox hT i

s
z

T w � hT isz
¼

dT bm

dx

T w � T bm

¼ k0 ð16Þ

where k 0 is the eigenvalue. Eq. (16) means the temperatures
increase exponentially with distance along the streamwise
direction. For instance, in the case of the solid temperature

T w � hT isz ¼ ðT w � hT isz;inÞ expð�k0xÞ ð17Þ

For later use we define a dimensionless eigenvalue k as

k ¼ 2wcPek
0

where the Peclet number is

Pe ¼ qfcfumð2wcÞ
kf

ð18Þ

Finally, from Eqs. (4), (11), (12) and (16), the governing
equations for dimensionless velocity and temperature dis-
tributions are given as follows:

P high ¼ Dahigh
d2U f

z

dY 2
� U f

z ð19Þ

� eqfcfumU
f
z

k
2wcPe

hb;fz

¼ 1

H 2

o

oY
kfe;high

ohb;fz

oY

� �
þ hhighahighðhsz � hb;fz Þ ð20Þ

1

H 2

o

oY
kse;high

ohsz
oY

� �
¼ hhighahighðhsz � hb;fz Þ ð21Þ

where

P high ¼
Khigh

elfum

dhpifz
dx

; U f
z ¼

huifz
um

;

hb;fz ¼ hT ib;fz � T w

T bm � T w

; hsz ¼
hT isz � T w

T bm � T w

ð22Þ

Dahigh ¼
Khigh

eH 2
; T bm ¼

Z H

0

hT ib;fz dy;Z 1

0

U f
z dY ¼ 1;

Z 1

0

hb;fz dY ¼ 1 ð23Þ

To solve the governing equations, Eqs. (19)–(21), the per-
meability K and the interstitial heat transfer coefficient h
should be determined in advance. The permeability is re-
lated to the viscous shear stress caused by the fins. The
interstitial heat transfer coefficient is related to the convec-
tive heat transfer from the fins. As pointed out in Slattery
[20], we lose some information with any averaging ap-
proach: in the present case, the dependence of the velocity
and temperature distributions for the fluid phase in the
averaging direction. In the averaging approach, we typi-
cally replace the lost information with empirical data for
K and h. For the present configuration, however, these
parameters can be determined analytically through an
approximation. For this, it is assumed that the characteris-
tics of pressure drop and heat transfer from the fins are
similar to those of the Poiseuille flow between two infinite
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parallel plates. The velocity distribution for the Poiseuille
flow in this configuration can be easily determined to be

u ¼ 6huifz �
z
wc

1� z
wc

� �
ð24Þ

Using Eq. (24), the permeability is obtained from its defini-
tions, Eq. (8), as

Khigh ¼
ew2

c

12
ð25Þ

In order to obtain the interstitial heat transfer coefficient,
we use the Nusselt number for the Poiseuille flow between
two infinite parallel plates subject to the exponential wall
heat flux in the streamwise direction, because the heat flux
from the fins exponentially decreases along the streamwise
direction. The Nusselt number is available in Ref. [21] and
given as the following equation:

NuH5 ¼
hhigh � 2wc

kf
¼ 3

8

X1
n¼1

�CnY nð1Þb2
n

ð32=3Þb2
n � k

" #�1

ð26Þ

From Eq. (26), a correlation for the interstitial heat trans-
fer coefficient is obtained as

hhigh ¼
kf
2wc

� ð8:2426� 0:0230kÞ ð27Þ

Once the permeability and the interstitial heat transfer
coefficient are determined, velocity and temperature distri-
butions can be obtained by solving Eqs. (19)–(21). The gen-
eral solution for the dimensionless velocity is given as

U f
z ¼ �P high 1�

cosh 1ffiffiffiffiffiffiffiffiffi
Dahigh

p Y � 1
2

� �� �

cosh 1

2
ffiffiffiffiffiffiffiffiffi
Dahigh

p
� �

0
BB@

1
CCA ð28Þ

where

P high ¼ � 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Dahigh

p
tanh

1

2
ffiffiffiffiffiffiffiffiffiffiffiffi
Dahigh

p
 ! !�1

ð29Þ

The dimensionless temperatures hb;fz , hsz and the dimension-
less eigenvalue k can be obtained by solving Eqs. (20), (21)
and (27) iteratively. For instance, the method of successive
approximation introduced in Ref. [22] can be used. This
technique consists of guessing a particular polynominal
for hb;fz , substituting this guess into the left-hand side of
Eq. (20), and finally solving Eqs. (20), (21) and (27) to ob-
tain a better guess for hb;fz . The procedure can be repeated
until the change in the k value from one approximation to
the next is below a pre-determined percentage. It is worth
mentioning that the last relation of Eq. (23) needs to be em-
ployed in this procedure. Without this relation it is impos-
sible to solve Eqs. (20), (21) and (27) and to obtain the
better guess for hb;fz .

2.2.2. General solutions for low-aspect-ratio
microchannel heat sinks

Temperature and velocity distributions for low-aspect-
ratio microchannel heat sinks can be obtained by similar
method to that for high-aspect-ratio microchannel heat
sinks. The only difference in the averaging method is the
direction of averaging. While the averaging is performed
in the z-direction for high-aspect-ratio microchannels, it
is in the y-direction for low-aspect-ratio microchannels.
For the present case, an averaged quantity is defined as

h/iy ¼
1

H

Z H

0

/dy ð30Þ

In addition, it is useful to define the one-dimensional bulk
mean temperature for the fluid phase as

hT ib;fy ¼
R H
0
TudyR H

0
udy

ð31Þ

The governing equations for averaged velocity and temper-
ature are established by averaging Eqs. (1) and (2) in the
y-direction. As a result, the governing equations for dimen-
sionless velocity and temperature distributions are given as
follows:

For the fluid phase,

P low ¼ Dalow
d2U f

y

dZ2
� U f

y ð32Þ

� qfcfumU
f
y

k
2wcPe

hb;fy

¼ 1

ðwc þ wwÞ2
o

oZ
kfe;low

ohb;fy

oZ

 !
� hlowalowh

b;f
y ð33Þ

For the solid phase,

hsy ¼ 0 ð34Þ

where

alow ¼ 1

H
; kfe;low ¼ kf ð35Þ

P low ¼ K low

elfum

dhpify
dx

; U f
y ¼

huify
um

;

hb;fy ¼
hT ib;fy � T w

T bm � T w

; hsy ¼
hT isy � T w

T bm � T w

ð36Þ

Dalow ¼ K low

eðwc þ wwÞ2
; T bm ¼

Z wc

0

hT ib;fy dz;

1

e

Z e

0

Uy dZ ¼ 1;
1

e

Z e

0

hb;fy dZ ¼ 1 ð37Þ

It is noted that the temperature gradients within the fins
are neglected in Eq. (34) since generally the fin efficiency is
almost 1 when the aspect ratio is low (as < 1). For low-
aspect-ratio microchannels, permeability Klow and intersti-
tial heat transfer coefficient based on one-dimensional bulk
mean temperature hlow are defined as the following
equations:

K low ¼ �eHhuify �
ou
oy

����
y¼H

� ou
oy

����
y¼0

 !�1

ð38Þ
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hlow ¼ � kf
T w � hT ib;fy

oT
oy

����
y¼0

 !
ð39Þ

We obtain values of Klow and hlow from those of the Poiseu-
ille flow between two infinite parallel plates, one of which is
subjected to constant temperature and the other to insu-
lated condition [21].

K low ¼ eH 2

12
ð40Þ

hlow ¼ ð4:861Þ kf
2H

ð41Þ

Once the permeability and the interstitial heat transfer
coefficient are determined, velocity and temperature distri-
butions can be obtained by solving Eqs. (32) and (33). The
general solution for the dimensionless velocity is given as

U f
y ¼ �P low 1�

cosh 1ffiffiffiffiffiffiffiffi
Dalow

p e
2
� Z

� �� �

cosh e

2
ffiffiffiffiffiffiffiffi
Dalow

p
� �

0
BB@

1
CCA ð42Þ

where

P low ¼ � 1� 2
ffiffiffiffiffiffiffiffiffiffiffi
Dalow

p

e
tanh

e

2
ffiffiffiffiffiffiffiffiffiffiffi
Dalow

p
� �� ��1

ð43Þ

The dimensionless temperature for the fluid phase hb;fy and
the dimensionless eigenvalue k can be obtained by solving
Eq. (33) iteratively.

2.3. Asymptotic solutions

2.3.1. Asymptotic solutions for high-aspect-ratio

microchannel heat sinks

When the channel height is much larger than the chan-
nel width and the solid conductivity is much higher than
the fluid conductivity, the governing equations given by
Eqs. (19) and (20) can be simplified and analytic solutions
for the dimensionless velocity and temperature can be
obtained in explicit form. The following relations are
assumed:

H � wc; ks � kf ð44Þ

Estimating the order of magnitude of each term appearing
on the right-hand side of Eq. (19), we have

w2
c

H 2
� 1 ð45Þ

Combining Eqs. (20) and (21) yields

� eqfcfumU
f
z

k
2wcPe

hb;fz

¼ 1

H 2

o

oY
kfe;high

o

oY
hsz �

1

hhighahighH 2

o

oY
kse;high

ohsz
oY

� �� �� �

þ 1

H 2

o

oY
kse;high

ohsz
oY

� �
ð46Þ
Estimating the order of magnitude of each term appearing
on the right-hand side of Eq. (46), it follows that

kf
H 2

;
ksw2

c

H 4

� �
� ks

H 2
ð47Þ

By using relations presented in Eqs. (45) and (47), the
governing equations given by Eqs. (19) and (20) are simpli-
fied as

P high ¼ �Uz ð48Þ

� eqfcfumUz
k

2wcPe
hb;fz ¼ hhighahighðhsz � hb;fz Þ ð49Þ

Asymptotic solutions for velocity and temperature distri-
butions can be obtained by solving Eqs. (48), (49) and
(21). The asymptotic solutions are as follows:

Uz ¼ 1 ð50Þ

hsz ¼
p
2

1þ kse;high
H 2hhighahigh

p
2

� �2� ��1

sin
p
2
Y

� �
ð51Þ

hb;fz ¼ p
2
sin

p
2
Y

� �
ð52Þ

where

P high ¼ �1 ð53Þ

k ¼ 4w2
c

ekf

p
2

� ��2 H 2

kse;high
þ 1

hhighahigh

� ��1

ð54Þ
2.3.2. Asymptotic solutions for low-aspect-ratio

microchannel heat sinks

When the channel height is much smaller than the chan-
nel width, the governing equation given by Eq. (32) can be
simplified and analytic solutions for the dimensionless
velocity and temperature can be obtained without the iter-
ative procedure. When the aspect ratio is very low
(H � wc), by estimating the order of magnitude of each
term appearing on the right-hand side of Eq. (32), we have

lf

w2
c

� lf

H 2
ð55Þ

By using this relation, the governing equations given by
Eq. (32) are simplified as

P low ¼ �U f
y ð56Þ

Asymptotic solutions for velocity and temperature distri-
butions can be obtained by solving Eqs. (33) and (56).
The asymptotic solutions are as follows:

U f
y ¼ 1 ð57Þ

hb;fy ¼ p
2
cos

p
e

Z � e
2

� �� �
ð58Þ

hsy ¼ 0 ð59Þ

where

P low ¼ �1 ð60Þ

k ¼ 2wcPe
qfcfum

p
e

� �2 kfe;low
ðwc þ wwÞ2

þ hlowalow

 !
ð61Þ
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3. Results and discussion

3.1. Velocity and temperature distributions

In order to validate the solutions presented in previous
sections, velocity and temperature distributions obtained
from general solutions and asymptotic solutions are com-
pared with results of the two-dimensional direct numerical
simulation. Two-dimensional numerical solutions are re-
garded as exact solutions and obtained by solving Eqs.
(1) and (2) using the control–volume-based finite difference
method. The solutions for high-aspect-ratio heat sinks are
compared with numerical results in Figs. 2 and 3. In Fig. 2,
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Fig. 2. Dimensionless velocity distributions for high-aspect-ratio heat
sinks: (a) as = 6, (b) as = 12 and (c) as = 18.
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Fig. 3. Dimensionless temperature distributions for high-aspect-ratio heat
sinks: (a) as = 6 (e = 0.5, kf/ks = 0.00414), (b) as = 12 (e = 0.5, kf/ks =
0.00414) and (c) as = 18 (e = 0.5, kf/ks = 0.00414).
velocity distributions based on the averaging method are
compared with numerical solutions. The general solution
accurately reproduces the numerical solution when as > 1.
On the other hand, the asymptotic solution predicts the
numerical solution within 5% when as > 10. Flow is almost
uniform (slug flow) throughout microchannels, because vis-
cous shear stress by the fins is dominant. But, there is the
variation of the velocity near the boundary, which is due
to shear stress by the top and bottom surfaces. In Fig. 3,
temperature distributions are presented. The general solu-
tions agree closely with numerical results when as > 1,
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while the asymptotic solutions predict the numerical solu-
tions accurately when as > 10. As the aspect ratio of micro-
channel increases, the temperature difference between the
fluid phase and the solid phase decreases. This is because
heat transfer area between the fins and the fluid increases
as the height of a microchannel heat sink becomes larger.
In addition, the temperature variation in the solid phase
along the fin direction increases as as increases. It is due
to the fact that the fin efficiency decreases as the height
of a microchannel heat sink becomes larger. The solutions
for low-aspect-ratio heat sinks are also compared with
numerical results in Figs. 4 and 5. As shown in these
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Fig. 4. Dimensionless velocity distributions for low-aspect-ratio heat
sinks: (a) as = 0.2 (e = 0.5), (b) as = 0.1 (e = 0.5) and (c) as = 0.05
(e = 0.5).
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Fig. 5. Dimensionless temperature distributions for low-aspect-ratio heat
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figures, the general solutions agree closely with numerical
results when as < 1. The asymptotic solutions well predict
the numerical solutions when as < 0.1.

3.2. Friction factor and Nusselt number

In the present paper, the concepts of friction factor and
Nusselt number are used for describing macroscopic quan-
tities such as average pressure drop across a channel and
average heat transfer rate from a wall. The friction factor
is defined as



D.-K. Kim, S.J. Kim / International Journal of Heat and Mass Transfer 49 (2006) 695–706 703
f ¼ sw
1
2
qu2m

ð62Þ

According to Eq. (53), the friction factor in the high-as-
pect-ratio limit (as ! 1) is expressed as

fReDh
¼ 24

as
as þ 1

� �2

ð63Þ

where Dh is the hydraulic diameter of the channel. From
Eq. (60), the friction factor in the low-aspect-ratio limit
(as ! 0) is given as

fReDh
¼ 24

1

as þ 1

� �2

ð64Þ

The friction factors for high-aspect-ratio microchannel
heat sinks are shown in Fig. 6. When 1 < as < 20, the fric-
tion factor increases as the aspect ratio increases. For large
aspect ratio (as > 20), the behavior of the friction factor ap-
proaches that of the flow between two infinite parallel
plates. The friction factors for low-aspect-ratio microchan-
nel heat sinks are shown in Fig. 7. As we can see, the fric-
tion factor increases as the aspect ratio decreases when
0.05 < as < 1. For small aspect ratio (as < 0.05), the behav-
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Fig. 6. Friction factors for high-aspect-ratio heat sinks.
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ior of the friction factor also approaches that of the flow
between two infinite parallel plates.

The Nusselt number is given as

NuH ¼ q00

ðT w � T bmÞ
H
kf

¼ a2s e
4

k ð65Þ

According to Eqs. (27) and (54), the Nusselt number for
as ! 1 is given as

NuH ¼ a2s e
4

3:341Dþ1:092�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:341Dþ1:092Þ2�1:229D

q
0:01864D

0
@

1
A

ð66Þ
where D ¼ kf

ks
e

1�e a
2
s . From Eq. (61), the Nusselt number for

as ! 0 is given as

NuH ¼ a2s e
4

4p2 þ 9:722

a2s

� �
ð67Þ

Eq. (66) shows that the Nusselt number depends on the
conductivity ratio, the aspect ratio, and the porosity. The
effect of these parameters on the Nusselt number is illus-
trated in Figs. 8 and 9. The Nusselt numbers for high-
aspect-ratio microchannel heat sinks are shown in Fig. 8.
When as > 1, the Nusselt number increases as the aspect
ratio of the microchannel increases, because the heat trans-
fer area of the fins increases. The Nusselt number increases
as the porosity decreases. This is based on the fact that the
heat transfer along the fins increases as the fin thickness in-
creases. The Nusselt number increases as the conductivity
ratio increases. This is because the fin efficiency increases
as the solid conductivity becomes larger. On the other
hand, the Nusselt numbers for low-aspect-ratio microchan-
nel heat sinks are shown in Fig. 9. As we can see, the Nus-
selt number increases as the porosity of the microchannel
increases, because the heat transfer area of the bottom wall
increases. The Nusselt number does not strongly depend
on the conductivity ratio because the fin efficiency for the
low-aspect-ratio heat sink is almost 1 and does not vary
considerably.
3.3. Thermal resistance of the microchannel heat sink

The thermal performance of the microchannel heat sink
can be evaluated by the concept of thermal resistance. Gen-
erally, the thermal resistance is defined as the temperature
difference between the heat sink base temperature at the
outlet and the fluid bulk mean temperature at the inlet
per unit heat flow rate.

Rh ¼
T w;out � T bm;in

q
ð68Þ

For the constant temperature boundary condition, the
thermal resistance is given as

Rh ¼
1

qfcf _Q 1� exp � 2
a2s e

NuH
Pe

L
wc

� �� � ð69Þ
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where _Q is the flow rate, When the pumping power Cpump is
fixed, the flow rate is given as

_Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e
2l

Cpump

fRe
D2

hWH
L

s
ð70Þ

Figs. 10 and 11 depict the thermal resistances for various
heights. The thermal resistances calculate using the asymp-
totic solution, the general solution, and the numerical
simulation, respectively. Results of the two-dimensional
numerical simulation can be regarded as exact values for
the thermal resistance. As shown in Figs. 10 and 11, results
from the general solution match well with numerical re-
sults. In addition, asymptotic solution is simple, but accu-
rately predicts thermal resistance. As we can see, the total
resistance has a minimum value. This is because the flow
rate and the heat transfer area increase but the fin efficiency
decreases as the height of the microchannel heat sink be-
comes larger. Fig. 12 presents the thermal resistances for
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various aspect ratios and porosities. As illustrated in
Fig. 12, there exists a set of the aspect ratio and the poros-
ity for which the thermal resistance is minimized. This is
because the flow rate increases but the fin efficiency de-
creases as the porosity becomes larger, and because the
heat transfer area increases but the flow rate and the fin
efficiency decrease as the aspect ratio becomes larger. It is
worth mentioning that the optimum values obtained by
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Fig. 14. Comparison between results from the models and experimental
data for (a) friction factors and (b) thermal resistances.
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using averaging approach are in close agreement with
numerical results. These dimensions are important to de-
sign a microstructure for microchannel heat sinks. In addi-
tion, Fig. 13 shows the comparison between thermal
resistances for the uniform wall temperature and constant
heat rate conditions. As we can see, the thermal resistance
for the uniform wall temperature is about 10% less than
that for constant heat rate condition.

3.4. Comparison of solutions with experimental data

In addition to the comparison with the numerical re-
sults, the present results are also compared with experimen-
tal data by Kawano et al. [23]. Fig. 14 presents the friction
factors and the thermal resistances. As shown in Fig. 14, re-
sults from the general solution lie within the range of exper-
imental uncertainties. The friction factors obtained from
the asymptotic solution underpredict the experimental
data. It is due to the facts that Kawano et al. performed
experiment in which aspect ratio of microchannel is 3.16
and that the asymptotic solution deviates from exact value
when as < 10.

4. Conclusion

In the present paper, we conduct a thermal analysis of
microchannel heat sinks subject to the uniform wall tem-
perature condition by using the modeling method based
on an averaging approach. The solutions for the velocity
and temperature distributions are obtained by solving
one-dimensional averaged governing equations without
resorting to a two-dimensional direct numerical simulation.
General solutions for both high-aspect-ratio and low-
aspect-ratio microchannel heat sinks are presented.
Asymptotic solutions in high-aspect-ratio and low-aspect-
ratio limits are given in explicit form. The solutions pro-
posed in the paper are validated by comparing them with
the results of direct numerical simulation. The general solu-
tion exactly reproduces the numerical solution and the
asymptotic solution predicts the numerical solution within
5% when as < 0.1 or as > 10. The friction factors and the
Nusselt numbers for microchannel heat sinks are obtained
from the presented solutions. As the aspect ratio increases,
the friction factor decreases when 0.05 < as < 1 and then in-
creases when 1 < as < 20. The friction factor does not vary
considerably when as < 0.05 or as > 20. It is shown that the
Nusselt number depends on the conductivity ratio, the as-
pect ratio, and the porosity. Finally, characteristics of the
thermal resistance of the microchannel heat sink are dis-
cussed. There exists a set of the aspect ratio and the poros-
ity for which the thermal resistance is minimized. This is
because the flow rate increases but the fin efficiency de-
creases as the porosity becomes larger, and because the
heat transfer area increases but the flow rate and the fin
efficiency decrease as the aspect ratio becomes larger. Gen-
erally, the thermal resistance for the uniform wall temper-
ature condition is about 10% less than that for the constant
heat rate condition.
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