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Abstract: Thermal nonlinearity is known to cause bistability in Whispering 
Gallery Mode (WGM) resonators and to destabilize the red slope of the 
Lorentzian resonant curve. We demonstrate an optical technique that allows 
compensation of the thermal effect and forces the resonances to appear 
linear with both red and blue slopes stable. 
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1. Introduction 

Whispering Gallery Mode (WGM) resonators have numerous applications in science and 
technology [1], including cavity QED [2,3], cavity optomechanics [4] nonlinear optics [5–7] 
and biosensing [8]. Thermal nonlinearity (caused by light absorption in the WGM) is present 
in virtually every WGMR and is known to cause bistability [9] at high circulating power 
levels. Importantly, at room temperature it renders the lower frequency slope (the “red” slope) 

#142430 - $15.00 USD Received 10 Feb 2011; revised 26 Mar 2011; accepted 26 Mar 2011; published 1 Apr 2011
(C) 2011 OSA 11 April 2011 / Vol. 19,  No. 8 / OPTICS EXPRESS  7365



of the WGM resonance unstable in silica resonators [10]. Observation of the actual line shape 
function must therefore occur at reduced power levels. Attempts have been made to cancel or 
reduce the thermal effect [11,12] at the expense of the optical quality factor. In this 
contribution we demonstrate a technique that allows one to cancel thermal nonlinearity in a 
WGM of choice using another WG mode in the same resonator as a stabilizer. We 
demonstrate the method by cooling a mechanical mode of the resonator through red detuning 
of a pump wave. 

2. Theoretical model 

Thermal shift of the optical resonator eigenfrequency is caused by the absorption of coupled 
laser power and subsequent heating. In WGM resonators the frequency shift Δω is caused 
primarily by temperature dependence of refractive index n and thermal expansion αT: 

 
1

T

n
T T

n T

  

          

  (1) 

However, if another WGM in the same resonator is excited at a different wavelength by a 
second laser and if this laser is thermally locked [10] on the stable “blue” slope, then the 
optical pumping of the original WGM can be stabilized. Before describing experimental 
results, we first detail the numerics used to study the stabilization mechanism. A simplified 
model is also described in section A. The system consists of a cavity with two WGM 
resonances at different wavelengths, but sharing approximately the same volume. A system of 
coupled equations similar to those in [13,14] is used to analyze the thermal behavior. Table 1 
lists the variables and definitions. Subscripts “a” and “b” denote the parameters of the 
corresponding resonator modes. 

Table 1. Parameters and variables used in computation of resonance curves in Fig. 2 

Parameter, notation Value
Optical quality factor, Q Qa = 1.4 × 107, Qb = 7 × 106

Density, ρ 2.2 g/cm3

Thermal conductivity, k  1.4 × 105 erg/(cm K s)

Heat capacity, C 6.7 × 106 erg/(g K)
Thermal diffusivity, D / )(D k C  = 9.5 × 103 cm2/s 
Third order susceptibility, χ(3) 1.3 × 1014 cm3/erg (esu) [15] 
Absorption coefficient, α 5 × 104 cm1 
Thermal expansion and thermorefractivity, β 8.83 × 106 K1 
Refractive index, n 1.444
Laser wavelength, λ 1540, 1450 nm
Resonator major radius, R 29 μm
Speed of light in vacuum, c 29979245800 cm/s
WGM eigenfrequencies, ωa,b, Variables

WGM volumes, Va,b. (l,m are WGM indices) (11/ 6 ) ( 7 / 6 )
3.9 2 /( ) 1( )V lR c n m     

WGM optical loss rates, γa,b / (2 )Q   

Pump power from laser 1 and 2, W1,2 erg/s

Generalized force created by lasers 1 and 2
2

1, 2 , ,1, 2
2 / ( )

a b a b
F W n V Q  

Kerr and thermal nonlinearity, µ and ν (3) 2
2 / n   and / (4 )n c C     

Thermal relaxation rate of the resonator 2
/ ( / 4)D R


   

We describe the electric field of the WGMs using the rotating wave approximation: 

 0( , ) ( ) ( ) ,i tE r t a t E r e 
   

  (2) 

where the field distribution of a mode is normalized so that 
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We introduce the equations describing the dynamics of the slowly varying amplitudes a 
and b in cgs units as 
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Here 
2

00 ) (( )rT E drT  
  

 is the relative temperature averaged over the volume of the 

modes (assumed equal for the two WGMs). The WGM volume formula given in Table 1 is an 
approximation computed for a sphere, and numerical simulations or other approximations 
may be used for spheroidal resonators. The thermal nonlinearity observed in the experiment is 
a result of mutual dynamics of the laser’s frequency scan and laser induced eigenfrequency 

5 ,cy  change in the WGM. The effective time constant of the thermal nonlinearity 
depends on the laser scan rate. Static behavior of the resonator corresponds to the longest time 
constant describing thermal relaxation of the whole resonator. 

2.1 Solution of the nonlinear system 

To deal with the complex numbers in Eqs. (4), field amplitudes are defined as 1 2a aa i   and 

1 2b bb i  . We look for the solutions in which 1 2 1 2, , ,ba a b  are real: 
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In order to accommodate both very large and very small quantities in a numerical solver 
we use non-dimensional variables. The following substitutions are made in Eqs. (5): 

1 1 ,ca y a 2 2 ,ca y a 1 3 ,cb y b 2 4 ,cb y b ,ct t  and , 1,2 ,a b a b      

where ,c
b

a a
c

a

a b
 
   

  , a
c

a




 
 , and 

1
c

a

t


 . With these substitutions, the 

equations contain only dimensionless values which are close to unity in magnitude 
(derivatives here are with respect to τ): 
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We set all time derivatives to zero and find the static solutions of the system (4) using the 
numerical solver Maple. The power circulating in resonator mode 
”a”, for example, can be estimated as 
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We also check the static solutions for stability against minor deviations of variables yi in 
the Lyapunov sense. Stability analysis is performed as previously described in [13]. To model 
the experimental outcomes, we fix the frequency of the first laser ω1 and scan the frequency of 
the second laser to observe the stabilization effect, as shown in the next section. We disregard 
the cross-mode modulation via the Kerr effect as the thermal effect is the dominant 
nonlinearity in our case. 

3. Experimental verification 

We use two New Focus velocity lasers to probe the resonator. The stabilizing laser (ω1, 
λ11550nm) excites the WGM at λ = 1543.2 nm and the probing laser (ω2, λ11450nm) 
operates at λ = 1433.3 nm. We use a WDM coupler to combine the two lasers and to separate 
the optical signals passing through the resonator. A tapered fiber coupler [16,17] is used to 
excite the WGMs of an ellipsoidal resonator with a major radius of 29 micrometers fabricated 
on a silicon chip. Experimental setup diagram is shown on Fig. 1. 

 

Fig. 1. Schematic of the experimental setup. 

 

Fig. 2. A) experimental frequency scans of a WGM resonance at 1450 nm without (red) and 
with stabilization (blue). B) solutions of the system (4). WGM resonance with thermal effect 
(red dots show unstable solutions). Solutions for the same mode when the stabilizing laser is 
activated constitute a nearly Lorentzian lineshape. Note the frequency shift of the stabilized 
resonance caused by heating from the stabilizing WGM. 

During the experiment we first scan the 1450 nm laser alone over the resonance and record 
the resonance with the thermal nonlinearity (red trace on the left panel of Fig. 2). The shape of 
this resonance is slightly different from the static solution due to dynamic effects. We then 
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activate the stabilizing laser at 1550 nm and thermally lock it to the blue slope of the nearby 
resonance. Heating from this laser causes the 1450 nm resonance to shift by a value that 
depends on the pump power. With the stabilizing laser enabled, the 1450 nm WGM exhibits a 
more Lorentzian lineshape (blue trace on the left panel of Fig. 2). 

The vertical axis of the right panel gives the calculated circulating power for the 
experimental conditions: coupled power of 300 μW at 1550 nm, and 130 μW at 1450 nm; and 
loaded quality factors of 1.4 × 107 and 7 × 106, respectively. 

If the Q of both modes is similar, a much higher coupled power (relative to the probe 
power of the stabilized mode) is required. In well fabricated WGMs, especially in spheroidal 
ones, most modes have high optical Q and it may be difficult to find a pair of modes with 
different Q. Nonetheless, the difference in Q can still be achieved by using an asymmetric 
coupling technique, wherein distinct transverse WGMs (different number of field maxima in 
vertical direction) are used. Such modes have maxima shifted in the vertical direction, 
enabling a strong difference in loaded Q of the two modes by a single taper waveguide. The 
modes in our experiment were, in fact, of a different order and the higher Q mode (3 maxima 
in vertical direction, l-m = 2) was more weakly loaded than the stabilized mode (2 maxima, l-
m = 1). As shown in Fig. 2, the numerical model verifies the experimental results with good 
accuracy. The thermal relaxation rate was chosen to correspond to a quarter of resonator 
radius R to match experimental results. 

We further tested the stability of the 1450nm mode by manually tuning the probing laser 
to the blue and red slopes. The induced stability allowed us to apply optomechanical cooling 
and amplification to a mechanical mode present in our optical resonator (symmetrically on 
both slopes of the optical resonance). Doing so in the unresolved sideband regime we obtained  
 

 
Fig. 3. Optical cooling and amplification of a 70 MHz mechanical mode of the optical 
resonator. Broadening and narrowing of the mechanical spectrum occurs due to 
optomechanical cooling and amplification in the unresolved sideband regime. Colored lines 
represent Lorentzian fits of the experimentally recorded spectra. Inset shows an optical 
photograph of the resonator near the fiber coupler. 
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modest but measurable cooling and amplification, as shown in Fig. 3. It is important to note 
that cooling (i.e., stable operation on the red slope) was not possible in the thermally 
unstabilized system. 

To further explain the data presented in Fig. 3, laser light passing through the optical 
resonator is modulated by cavity vibrations which impose optical sidebands. These are 
demodulated by a photodetector, which provides an electronic signal with signatures of the 
mechanical resonances. This signal is then displayed by the electrical spectrum analyzer and 
the linewidth of the mechanical oscillator can be analyzed [4]. The spectra presented here 
were obtained by detecting the optical signal at 1550 nm that was thermally locked to the 
cavity resonance. 

4. Conclusion 

We have demonstrated an all-optical technique that makes it possible to counteract thermal 
nonlinearity in WGM resonators and makes the red slope of the resonant curve accessible. To 
demonstrate the technique we have applied it to optical cooling of the mechanical mode of an 
optomechanical resonator by pumping the resonator mode in the red detuned regime. This 
application to optomechanical cooling should be considered only illustrative as there are 
potential problems in applying the method to achieve large amounts of cooling. Among these 
is the onset of parasitic oscillation of mechanical modes as well as heating of the resonator by 
the stabilizing pump wave. Nonetheless, the method might find use in applications wherein it 
is necessary to observe stable resonances at higher power levels. 

Appendix A. Analytical model 

To understand the underlying stabilization mechanism, we develop a simple nonlinear 
dynamics model. In the case of a single WGM excitation, cavity heating by the pump laser 
depends on the pump power, the optical coupling efficiency, and detuning from the resonance 
frequency. Based on the conservation of energy, the net heating of the cavity is the laser pump 
heating ( inq ) minus the thermal dissipation ( outq ) [10]: 
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Here 2 is the laser frequency; ,0 (1 )bb     is the resonance frequency; and we have 

defined the effective laser power tot
h
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W
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W
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 , where absQ is the absorption quality factor of 

the cavity and η is the coupling efficiency. The stability of WGM can be inferred by 
investigating the stability of the steady solution to Eq. (A1). The rearrangement of Eq. (A1) 
yields 
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The steady state solutions for 0  and their stability can be determined from the phase 
diagram (Fig. 4). For blue detuning of the pump laser 2( )b  , the monotonic form of 

2 ,, )( hf W   leads to a single, stable, steady state; whereas on red side 2( )b  , thermal 

bistability may arise at sufficient pump power ( hW ). The bistability would emerge as the 

saddle-node bifurcation when hW

K
is above a certain threshold (i.e. large pump power or small  
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Fig. 4. Left panel: Phase diagram of temperature change of the cavity upon application of a 
blue detuned pump. There is always a single, stable steady-state solution. Right panel: Phase 
diagram of temperature change of the cavity upon using a red detuned pump. The thermal 
bistability may arise at sufficient pump power. The excitation of a stabilizing mode can 
compensate the nonlinearity via a saddle-node bifurcation. 

thermal dissipation). In other words, the increase of thermal conductivity or the decrease of 
pump power would eliminate this bistability. In the present system, the blue-detuned 
excitation of another (stabilizing) WGM compensates the thermal nonlinearity by creating an 
“effective” enhancement to thermal conductivity. The stabilizing mode adds a second term to 
the dynamical equation as follows: 

 
  ,2
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Here, the effective laser power for the stabilizing mode, sW  is defined in the same fashion 

as hW .   2

, 1/ ) 1( /s c s a aW W      and 2
, 2/ {[( ) / ] 1}h c h b bW W      are the coupled 

power from the stabilizing and original pump mode. We are interested in the stabilizing effect 
of this additional term ,s cW  and explore stability of the steady state solutions s  of (A3) 

against small deviations. With a substitution of s T    into Eq. (A3) we get 
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When the stabilizing mode is excited on the blue side, the positive ,s c

a

W





 will effectively 

increase the thermal conductivity and eliminate the bistability via a saddle-node bifurcation. 

For the pump mode, ,h cW





= ,h c
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 is negative on the blue slope and the solution is 

always stable. On the red slope, ,h cW





 is positive and the coefficient of T  on the right hand 

side of (A4) must be negative to ensure the stability, leading to stability condition: 
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For optimal pump detuning of the stabilizing mode (maximum value of ,s c

a

W





), we find 
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, and the right hand side of Eq. (A5) has to be greater than the 

maximum value of a   ,
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. We finally get the stability condition: 
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