# 직접 격자 사상법을 이용한 직사각컵 및 S-Rail 성형공정의 3차원 유한요소 역해석

김승호\*, 허 훈\*

### Three Dimensional Finite Element Inverse Analysis of Rectangular Cup and S-Rail Forming Processes using a Direct Mesh Mapping Method

Seung-Ho Kim and Hoon Huh

#### Abstract

An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. In some drawing or stamping simulation with inverse method, it is difficult to apply inverse scheme due to the large aspect ratio or steep vertical angle of inclination. The reason is that initial guesses are hard to make out with present method for those cases. In this paper, a direct mesh mapping scheme to generate initial guess on the sliding constraint surface described by finite element patches is suggested for one step inverse analysis to calculate initial blank shape. Radial type mapping is adopted for the simulation of rectangular cup drawing process with large aspect ratio and parallel type mapping for the simulation of S-Rail forming process with steep vertical angle of inclination.

**Key Words**: Direct Mesh Mapping Method, Inverse Finite Element Analysis, Initial Guess, Rectangular Cup Drawing Process, S-Rail Forming Process

#### 1. 너론

드로잉이나 스탱핑으로 성형되어 지는 박판 부재는 제 조 공정의 중요한 역할을 차지하고, 적용 분야가 광범위 한데 비하여 성형 공정 및 초기 블랭크의 설계는 여전히 경험적 기술에 바탕을 두고 있다. 초기 블랭크의 설계는 재료의 낭비를 줄이고 성공적인 부재의 성형을 보장하는 최소의 블랭크 형상을 예측하는 것으로, 최근 수치해석

<sup>\*</sup> 한국과학기술원 기계공학과

기법과 컴퓨터의 성능 향상에 더불어 활발한 연구가 진 행되어 오고 있다. 이와 같은 초기 소재 예측방법에는 변형이론을 고려하지 않은 미끄럼 선장법(Slip-line Method)<sup>(1)</sup>. (Characteristic of Plane Stress)(2). (Geometric Mapping)<sup>(3)</sup>과 같 은 변형이론을 고려하지 않은 방법과, 변형이론을 근간 으로 하는 이상성형(Ideal Forming) |론 및 유한요소 역 해석(Finite Element Inverse Analysis)<sup>(4-10)</sup>등이 있다. 변 형이론을 기본으로 한 연구들은 블랭크 형상뿐만 아니라 변형률 분포도 매우 짧은 계산시간으로 허용 가능한 정 도의 정성적인 예측이 가능하다. Lee Huh<sup>(8)</sup>는 유한요 소 역해석을 3 원으로 확장하여 좋은 결과를 얻었음을 보여주었다. 최근에는 체적 가감법(11), 민감도 법을 이용 한 초기 블랭크의 설계<sup>(12)</sup> 및 유한요소 역추적방법을 이 용한 연구<sup>(13)</sup>도 진행되고 있지만 해석 대상이 복잡해지 계산시간이 상당히 커지는 단점이 있다. 설계 비용이나 계산시간에 비추어 보면 변형이론을 기 본으로 한 유한요소 역해석이 상당히 효과적인 초기 블 랭크의 설계방법이라 할 수 있겠지만, 드로잉 공정이나 스탱핑 공정에서 자주 볼 수 있는 세장비가 큰 부품이 나, 다이와 펀치사이의 갭이 작고 수직벽의 경사가 큰 경우는 해석 시에 필요한 초기 추측치를 기존의 방법으 로는 만들기가 난해하여 해석을 수행하기가 어려운 단점 이 있다. Lee Huh<sup>(7)</sup>는 초기 추측치를 만드는데 있어 서, 미끄럼 선장법이나 기하학적인 사상법보다 발전적인 형태인 선형 역사상(Linear Inverse Mapping) |을 제안 하여 수직벽을 적절히 조절하여 해석을 수행했지만 수직

본 논문에서는 3 부원 임의의 형상을 가지는 부품의 유한요소 역해석을 위한 초기 추측치의 계산을 위해서 직접 격자 사상법(Direct Mesh Mapping Method) : 제안하였다. 제안된 방법을 사용하여 세장비가 큰 직사각 컵성형 공정의 해석을 위한 초기 추측치를 계산하였고, 수직벽의 경사가 큰 S-Rail

벽의 처리에 한계가 있고, 임의의 복잡한 곡면에서는 사

상함수를 구하기가 어려운 점이 있다.

#### 2. 직접 격자 사상법

본 논문에서는 유한요소 역해석의 초기 추측치를 계

산하기 위해 직접 격자 사상법을 제안하였다. 직접 격자 사상법은 최종형상의 격자에 맞는 직선들을 구성하고 이 직선들로 격자를 구성한 후, 직선들을 미끄럼 구속면에 직접 사상함으로써 초기 추측치를 계산하는 방법이다. 일반적으로 원통형 컵이나 직사각 컵 같이 두 축에 대해 기하학적인 대칭성을 가지고 있는 경우 방사형태의 격자 를 사용하면 적절하고, S-Rail Front Door Panel 같 이 기하학적인 대칭성이 없거나 복잡한 형상이 경우 평 행선 타입의 격자를 사용하는 것이 적절하다고 판단되어 진다. 먼저 원하는 최종형상으로부터 미끄럼 구속면을 유한요소 패치를 사용하여 모델링하고, 방사형 또는 평 행선형의 직선들을 정의한다. 최종형상의 격자에 맞게 시작 직선을 정의하고 격자를 구성한 후 구성된 격자를 직선의 절점별로 미끄럼 구속면에 위치시키게 된다. 최 종 격자를 유한요소 역해석의 초기 추측치로 사용하여 해석을 수행하게 된다. Fig. 1 - 이와 같은 직접 격자 사 상법의 절차를 나타낸 것이다.

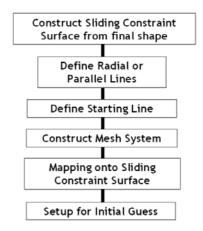



Fig. 1 Schematic procedure of a direct mesh mapping method.

<sup>\*</sup> 한국과학기술원 기계공학과

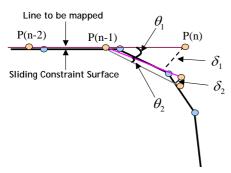



Fig. 2 Schematic diagram of mapping procedure for each line.

각 직선별로 절점을 배치하는 방법은 유한요소 패치를 사용한 미끄럼 구속면과 위치시키려는 절점 사이의 탐색 작업을 통하여 이루어진다. Fig. 2 : 각 직선을 미끄럼 구속면에 위치시키는 과정을 나타낸 것이다. (n-2) !과 (n) 을 배치시 (n-1)키는 과정은 다음과 같다. (n-2)(n-1)  $| \circ | \circ |$ 루는 각도와 초기 설정된 격자의 길이만큼 (n) !을 배치 시킨다. (n) 을 전체 탐색 과정을 통해서 상관 관계를 가지는 미끄럼 구속면 상의 요소를 구하고 이 요소와 이 루는 각도 θ1 만큼 회전을 시켜 준다. 이후에 절점과 미 끄럼 구속면상의 요소 사이의 탐색을 거쳐서 절점과 요 소 사이의 거리 δ - 상당히 작아 질 때까지 탐색을 반복 하게 된다. 각 직선별 첫 번째 절점의 배치는 사상의 시 작 직선과 만나도록 위치시키고 두 번째 절점은 각도를

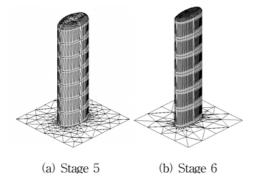



Fig. 3 Sliding constraint surfaces for the multi-stage inverse analysis of rectangular cup drawing

#### process with large aspect ratio.

직접 격자 사상법은 기존의 방법에 비해서 최종 형상과 초기 형상의 격자를 모두 새로 구성해야 하는 단점이 있지만 수직벽의 경사가 큰 경우나 세장비가 큰 경우에도 적절한 초기 추측치를 구함으로서 유한요소 역해석을 수행할 수 있고, 해석의 정확도를 높이기 위해 다단계로 쉽게 확장 할 수 있는 장점이 있다.

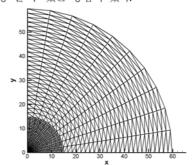



Fig. 4 Initial mesh system for the direct mesh mapping of the rectangular cup (radial type).

#### 3. 세장비가 큰 직사각 컵의 유한요소 역해석을 위한 초기 추측치의 계산

본 절에서는 직접격자 사상법을 이용하여 세장비가 큰 직사각컵의 다단계 유한요소 역해석을 위한 초기 추측치 Kim Huh 이 해석한 다 를 계산하였다. 단계 직사각컵 성형 공정<sup>(14)</sup>의 5 6 , Fig. 3 는 중간단계의 펀치 형상으로부터 구성한 미끄럼 구속면 을 나타낸 것이다. Fig. 4 : 방사형의 직선들로 구성된 초기 격자를 나타낸 것이고, Fig. 5 (a) (b) : 직접 격자 사상법을 이용하여 구성한 5 6 !계의 캔 형 상이다. 임의의 곡면에 따라 적절한 사상이 이루어지고 있음을 알수 있다. 5 6 계사이의 역해석을 수행 할 때, 5 . 6 !계의 캔 형상이 최종형상이 된다. Fig. 5 (c) 1 년계 역해 석을 통해 구한 6 계 캔의 두께변형률 분포를 도시한 것이다. 기와 같은 일단계 해석은 변형 양상을 정량적으 로 구해 설계의 변경을 쉽게 할 수 있는 장점이 있다.

<sup>\*</sup> 한국과학기술원 기계공학과

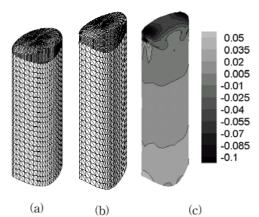



Fig. 5 (a) Initial guess generated by the direct mesh mapping (stage 5); (b) Final shape generated by the direct mesh mapping(stage 6); (c) Calculated thickness strain distribution of stage 6.

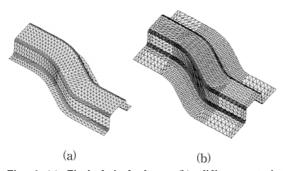



Fig. 6 (a) Final desired shape; (b) sliding constraint surface generated from the final shape.

## 4. S-Rail 성형공정의 유한요소 역해석

본 절에서는 직접 격자 사상법을 이용하여 수직벽의 경사가 큰 S-Rail 성형공정을 유한요소 역해석을 이용하여 해석하였다. 기존의 사상법으로는 초기 추측치를 구하기가 어려워 해석을 수행하기가 난해한 모델이다. 평행선 타입의 초기 직선들로부터 최종형상을 구하여 해석에 이용하였다. Fig. 6 (a) S-Rail의 최종형상을 나타내고, Fig. 6 (b) : 원하는 최종형

상으로부터 구성된 미끄럼 구속면을 나타낸다. Fig. 7 (a) : 평행선으로 구성된 직선들로부터 이루어진 초기격자 시스템을 나타낸 것이고, Fig. 7 (b) : 초기 격자를 미끄럼 구속면에 사상시켜 얻은 최종형상을 나타낸 것이다. 수직벽의 경사가 크고 형상이 복잡하지만 적절한 사상이 이루어지고 있음을 알 수 있다. Fig. 8 : 일단계 유한요소 역해석으로 구한 두께 변형률 분포를 도시한 것이다.

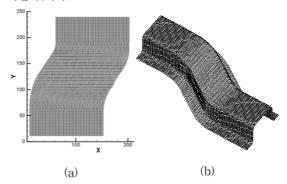



Fig. 7 (a) Initial mesh system for the direct mesh mapping of the S-Rail (parallel type); (b) Final shape generated by the direct mesh mapping.



Fig. 8 Thickness strain distribution of S-Rail calculated by one step inverse analysis.

#### 5. 결론 및 토론

본 논문에서는 디프 드로잉이나 스탱핑의 유한요소 역해석을 위하여 직접 격자 사상법을 제안하였다. 제안 된 방법을 사용하여 세장비가 큰 직사각 컵 성형 공정의 해석을 위한 초기 추측치를 계산하여 역해석을 수행하였 고, S-Rail | 성형 공정시의 초기

<sup>\*</sup> 한국과학기술원 기계공학과

추측치를 계산하여 역해석을 수행하였다. 제안된 방법은 초기 추측치와 최종형상을 모두 계산해야 하는 단점이 있지만, 계산이 힘든 부품의 초기 추측치를 쉽게 계산할 수 있고, 가단계 유한요소 해석으로의 확장이 쉬운 장점 을 가지고 있다.

#### 참 고 문 헌

- Karima, M., 1989, "Blank Development and Tolling Design for Drawn Parts Using a Modified Slip-Line Field Based Approach", J. of Engineering for Industry, ASME, Vol. 111, pp. 345-350
- (2) Vogel, J. H. and Lee, D., 1990, "An Analysis Method for Deep Drawing Process Design", Int. J. MEch. Sci., Vol. 32, pp. 891–897.
- (3) Sowerby. R., Duncan, J. L. and Chu. E., 1986, "The Modelling of Sheet Metal Stamping", Int. J. Mech. Sci., Vol. 28, pp. 415–430.
- (4) Batoz, J.L., Guo, Y.Q., Duroux, P. and Detraux, J.M, 1989, "On the Estimation of Thickness Strain in Thin Car Panels by the Inverse Approach", NUMIFORM89, pp.383-388.
- (5) Chung, K. and Richmond, O., 1994, "The Mechanics of Ideal Forming", ASME trans: J. of Applied Mechanics, Vol.61, pp.176–181.
- (6) Liu, S.D. and Karima, M., 1992, "A One Step Finite Element Approach for Production Design of Sheet Metal Stampings", NUMIFORM92, pp.497–502.
- (7) Lee, C.H. and Huh, H., 1997, "Blank Design and Strain Prediction of Automobile Stamping Parts by an Inverse Finite Element Approach", J. Mater. Process. Technol., Vol.63, pp.645-650.
- (8) Lee, C.H. and Huh, H., 1998, "Three Dimensional Multi-step Inverse Analysis for the Optimum Blank Design in Sheet Metal Forming Processes", J. of Mater. Process. Technol., Vol. 80, pp. 76–82.
- (9) Huh, H., Kim, S.H. and Kim, S.H., 2000, "Multi-stage inverse analysis of elliptic cup drawing with the large aspect ratio", Proc. Metal Forming 2000, pp. 107-116.
- (10) , , , , 2000, " |장비가 큰 타원형 컵 성형 공정의 다단계 유한요소 역해석", 한국소성 가공학회지, 9 , 3 , pp. 304-312.

- (11) , , , , , , , , , 1997, " 판성형의 초기소재 설계시스템", 한국소성가공학회 지, Vol. 6, No. 5, pp. 400-407.
- (12) Shim, H. B., Son, K. C. and Kim, K. H., 1999, "Optimum Blank Shape Design by Sensitivity Analysis", Proc. NUMISHEET '99, pp. 523–528.