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Extended Kalman Filter Based Relative State Estimation
for Satellites in Formation Flying

ojd P, ¢aEE
(Young-Gu Lee and Hyochoong Bang)

Abstract : In this paper, an approach is developed for relative state estimation of satellite formation flying. To estimate
relative states of two satellites, the Extended Kalman Filter Algorithm is adopted with the relative distance and speed between
two satellites and attitude of satellite for measurements. Numerical simulations are conducted under two circumstances. The
first one presents both chief and deputy satellites are orbiting a circular reference orbit around a perfectly spherical Earth
model with no disturbing acceleration, in which the elementary relative orbital motion is taken into account. In reality,
however, the Earth is not a perfect sphere, but rather an oblate spheroid, and both satellites are under the effect of .2
geopotential disturbance, which causes the relative distance between two satellites to be on the gradual increase. A near-Earth
orbit decays as a result of atmospheric drag. In order to remove the modeling error, the second scenario incorporates the
effect of the J, geopotential force, and the atmospheric drag, and the eccentricity in satellite orbit are also considered.

Keywords : formation flying, relative state estimation, J» geopotential disturbance, atmospheric drag, EKF

L Introduction provides line-of-sight(LOS) vectors between two satellites as

Spacecraft formation flying concepts have been studied a relative sensor measurement to surmount the drawback of
since the beginning of space program in which the GPS[15]. The objective of this paper is to provide a
spacecraft rendezvous and docking maneuver onto each method for reliable autonomous satellites in formation flying
other were the main issues. The modern-day emphases of without any assistance from external systems, just
spacecraft formation flying have been put on the extended introducing additional simple devices(laser range finder and
applications such as stereographic imaging, long baseline doppler radar) to the existing system. In this paper the
interferometry, and synthetic aperture radar(SAR) keeping a relative distance combined with satellite's attitude, which
formation of several homogeneous/heterogeneous spacecraft. provides line-of-sight(LOS) vector, and the speed between
These formation flying have the advantages of structural two satellites are adopted for relative sensor measurements.
flexibility in that even in case that one of the spacecraft This measurement system is very attractive in that it is
which form the cluster fails, the mission can be carried out relatively simple and cheap providing enough accuracy for
by reconfiguring the rest of the others, and the fine formation flying. To produce an accurate estimate of the
economical feasibility in that multiple satellites can provide true system state from thes nonlinear measurement model,
for large size of aperture of radar dish without attempting the Extended Kalman filter algorithm, which is probably the
to build up a large size radar dish by way of forming most widely used estimator for nonlinear systems, is
formation with its radius ranging from several meters to adopted to provide the minimum mean squared
kilometers. In many missions, the global positioning errorlMMSE) estimate. This paper consists of an overview
system(GPS) is adopted so as to measure the relative of the relative orbit dynamics of two satellites with and
position, but this system is applicable only to the without the effects of the J» disturbing force, atmospheric
near-Earth orbiting spacecraft. Some papers have made use drag and eccentricity of orbit, and the estimation of relative
of a vision-based navigation (VISNAV)system, which state variables using the Extended Kalman filter, and

simulation results are followed.
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satellites are orbiting and can be virtual one, that is, there
is no physical satellite occupying the chief position. The
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Fig. 1.Tllustration of the Hill’s frame.

remaining satellites, referred to as the deputy satellites, are

orbiting the chief and constitute a formation with the chief

as their center. The equations of relative motion start out

with the following assumptions

1. The chief orbit is circular and the relative distance
between the chief and deputy satellites is small compared
with the chief orbit radius.

2. The Earth is perfectly sphere and homogeneous.

3. There is no force acting on the two bodies other than
the inverse-squared gravitational force.

The relative motion of satellites are described in terms
of cartesian coordinate vector in the chief satellite centered
rotating reference frame, referred to as Hill frame with its
vector components{o,,0,,0,}, where o, is in the orbit

radius direction, o, is in along track direction, and o,

completes the vector triad.

p=(xx2) Q)

The deputy satellite position vector can be expressed as

r,=r+p=(r+1)0,+ yo, + 20, )

where 7(t) and 7,(t) are the inertial chief and deputy

position vectors, respectively. The angular velocity vector of
the rotating Hill frame relative to the inertial frame is

given by wa/N:fah with / being the chief frame true
anomaly, where O means the Hill frame and N inertial
frame. The acceleration vectors of the chief and deputy
satellites, taking the second derivatives with respect to the
inertial frame, are given

F=Gmr o=~k : 3

F==

n\u l ™

Further, the chief satellite acceleration vector can be

expressed as

'r;=rff'2—%=cf'2(l—r'fj-,z) @)
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Because the chief orbit angular momentum magnitude can
be expressed as 4=/ f and h is constant for unperturbed

case(Keplerian motion), taking derivative of h with respect
to time yields
h=25 7472 =0
. - 5
Fayy )
e
Using equations (3), (4), and (5), the acceleration vector of
the deputy satellite is reduced to

#=Li-2/ G-y ) -5 510,
Vel r
. ; . ‘ ©
HP+ 2 G- 2~ P Nog + 20,
r
(4
The deputy satellite motion can be expressed relative to the
inertial frame as follows:

rtx
L M. H
R/ Eaiubee A @)
74 7 -

where 7, = /(7. +x)° + Y+

The complete derivation of the relative equations of motion
is provided in Ref. [1]. If the relative distance between the
chief and the deputy satellites is small compared with the
chief orbit radius, the relative orbit equations of motion are

described as

(1425~ 27—y =0
p 7

c
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where f is true anomaly of the chief satellite, p is
semilatus rectum of the chief. If the chief orbit is chosen
to be circular so that 1;C=0, p=r, and e=0 then the
well-known relative equations of motion, referred to as the
Clohessy-Wiltshire(CW) equations are given by

¥-2n-37x=0
y-2nr=90 )
+nz=0

where n is the mean orbital rate of the chief satellite,

which is equal to the true anomaly rate for a circular

reference orbit.



964

2. The modified HCOW equations incorporating eccentri-

city in chief satellite

The modified HCW equations which incorporates the
eccentricity of the chief satellite can be obtained from the
general relative equations of motion described in section 2.1
and take the similar form of the original HCW equations
by way of non-dimensionalizing them with respect to the
chief orbit radius. The derivation is as follows{l]. The
non-dimensional relative coordinates can be expressed as

x Yy z
= — ’U: _’ 1
v r,’ T, T, (10)

The non-dimensional derivatives of =, v, and w with

respect to the chief orbit true anomaly are given by

i=z//.’+r—”u i:14'72+uf‘2(1—f’—

7 7 7 2

j P ) - . ’
L=vpeley Loyt eyt (11
7. 7 7 V4
i=w’f'+r—”w i=14/'/.‘2+14/f2(1—i

7 7 % V4

Applying the preceding equations to the general relative

equations of motion yields

4+ (=) - (1425 2 P O+ AT
7 7 7,

< <

P =2 vl -1-27)=0
7 r

3pu (12)

r 4 14 3 ” 7
=2 =y = of 2 1~ EBT _g
» 7

3%
1+ecos /

» ’

u—2v

After the same procedure for v and w components, we can
finally obtain the following elegant non-dimensional form of

relative equations as

3u _
1+ ecos /
V424 =0

w+w=0

-2V -

13)

These non-dimensional relative equations of motion take on
a similar form of the HCW equations and take the
eccentricity in the chief orbit into account.
3. The perturbing force modelling

3.1 The modified HCW equations

The HCW equations derived in the previous section are
based on the assumption that the Earth is perfectly sphere
distribution reality,
however, the Earth is not perfectly sphere, but rather an

and its mass is homogeneous. In

oblate spheroid due to its rotation, which causes variations
in the gravitational field and the relative distance between
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Fig. 2. Illustration of gravitational potential.

two satellites to be gradual increase. In this section the .5
disturbing force is applied to the right side of the Hill's
equations as a forcing function. The gravitational potential
of the earth, accounting for only latitude variation, takes on
the following form

V= _@{1_ N (req
r =2 r

where 7, is the radius of the earth at its equator, the B

] J, B (sin ¢)} (14)

are Legendre polynomial functions of order k, the .J; are
constant coefficients, and ¢ is the geocentric latitude. From
Eq.(14) the disturbing potential is given by

2
v, =—ﬁ(’i] YAICH
r\r
AV (15)
=-ﬁ(ij Ji[=-@3sin® g~ 1)]
r\ r 2
From Fig. 2. it is evident that sin @%. Hence,
” 2
v, = i‘_( fq) J,(1=3sin? isin’ )
: 2r\ r
Rt N (16)
= ﬁ[i] 12[1_3(ij ]
2r\ r 7
The .5 induced gravitational acceleration acting on a
satellite can be derived from the gravitational potential
functions in the inertial reference frame in spherical
coordinates
97, » o7, « or,, .
a, =VV, =ﬁi,+l re"i¢+-—-] Ter Z,
2 o or r ¢ rcosg 96
1-3sin’
3w, ( . sin” @) (17
=- o J,| 2singcos¢
0

Using the direction cosine matrix transforming the inertial
frame into the LVLH frame, the Eq. (17) can be expressed
in the LVLH frame as follows
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1-3sin®/sin’ @)
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Substituting Eq. (18) into Eq. (9) brings forth the following

equations

F—2np—3n*x=—4k(1—-3sin’ jsin’ 6)
V=2 ni=-24ksin’ 7sin @ cos @ 19)

%+ n*z=-2ksinicosisin@

3prs
where k=—§r’;iJ2 and 7= /%

The 4 term in the right side of Eq. (19) is based on the
assumption that the deputy satellite is in the vicinity of the
chief satellite such that two satellites experience the same
disturbing force. For reducing the modeling error, the
gradient term VJ(r,) must be taken into account. The
addition of the V4 (r.) term, however, causes the differential
equations of motion not to be solved analytically because it
has time varying coefficients. In Ref. [2], the V.4 (r,) term
is time averaged over a single period to resolve this
problem. while the analytical solution of the differential
equations of motion can be obtained, this causes another
problem of mismatching of the orbital periods of the two
satellites. In Ref. [2], the author also suggests a solution to
this problem via “speeding up” the reference satellite by
amount of time averaged components of the .A.

. 1 274
i= g+ [ A0 (20)

Applying this equation to relative motion brings forth a
linear, constant coefficient, coupled differential equation that
can be solved analytically. And the final differential
equations of motion take on the form that

=2y~ (5 - Dt x
P+ 2nc)x

1 p~
) ROk WAC ANV
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Further details on the preceding are provided in Ref. [2].

3.2 The modified HCW equations accommodating atmos-

pheric Drag

In this section, we take the effects of atmospheric drag
on the satellites formation into account. The previous works
done by Carter-Humi will be reviewed and applied to
system dynamics for estimating the relative states between
two satellite in the following section. In an inertial frame
the equations of motion of the satellite in orbit can be

expressed as

r=—f(r)r.— ag(rlrlr, 2)

The first term on the right accounts for gravitational

acceleration due to a central force field and the second
indicates atmospheric drag acceleration. The scalar o is a
constant associated with the atmospheric drag coefficient
and the geometry of the satellite. The function g stands for
atmospheric density, and assumed to be dependent only on
altitude. The preceding equation can be rewritten as

re=—f(r)r,— ag(r,)rr, 23)

under the assumption that the orbit is initially not of high
eccentricity but decay due to drag, in which the magnitude
of the radial velocity is very small compared with that of

the transverse velocity, that is, ¥J<< rcé. In the same way

the motion of a deputy satellite is governed by
rg=—f(rrs— By(ryr,ér, 24)

where 7,=7.,t7 and r is the relative position vector
between the chief and the deputy satellites, and 3 is the
atmospheric drag constant associated with the deputy. The
transformation to a rotating frame and changing independent
variables from time t to the chief satellite's true anomaly
with some algebraic processes lead to the simpler form

X =2 -l & +agryl+ Bg (r)nr
—(B-)gr)(rxY +rix—ry+rsll KO)]

V=2 —rlagr)+ B (r)nly (25)
—(B-) g 2ry+ () + 1 E6)]

==z~ (2 (B-)g(r)
where E0) is a transformation for simplifying the
governing equations, and further details are given in
Ref[9]. In a Newtonian gravitational field, f(r.)=u/r’
and ¢ (TC)= 1/ 7.. The acceleration due to the atmospheric
drag is, therefore, —(a/rc)|1:Lj7;c. Under the assumption that

the chief and the deputy satellites are close enough to each
other, they have identical drag constants, that is a =43, so
that we have the following elegant form

2
PSP CEaT
] , 1+£e7* cos(6-6,) 26)
Yy =-2x
=z

where € is eccentricity of orbit.

III. Relative State Estimation
In this section, the estimation of relative state between
two satellites will be presented using EKF as estimators.
From given system dynamic and measurement models, we
would like to obtain the minimum mean squared
errorfMMSE) estimate of the system state vector. The EKF
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makes use of linearized system dynamic and measurement
models, assuming that the non- linearities in system and
measurement models are sufficiently smooth. To obtain the
MMSE, The EKF is applied to the nonlinear discrete time
system of the form

x(k+1) = flx(k), v(k), k],

z(k) = H[x(k), k]+ w(k) 27

where z(k) is the state of the system at time step £k,
v{k) is the system noise, z(k) is the measurement vector,
and w(k) is the measurement noise. The control input are
not considered here. Tt is assumed that all the noises are
zero-mean gaussian and there is no correlation between

them.

E[v(iv" ()] =6,00),
E[w(iyw" ()= 8,R(), (28)
EpGW (N]=0, foralli,j

where @ and R represent the covariances of system noise
(w(k)), measurement noise(v(k)), respectively.

The problem of determining the MMSE is equivalent to
calculate the conditional mean from given measurements.
The EKF propagates the first two moments of the
distribution of z(k), mean and covariance, through the
system and measurement equations, recursively, and then the
transformed mean and covariances are updated with new
current measurement. The mean is transformed through
non-linear system and the covariance is transformed through
linearized equations. The preceding can be summarized as
follows [13,14]

1. Prediction quantities at time step &

$(h+1|K) = fTack] £),k+1]
Pk+1k)=J Pk | k), +Qk+1)
2k +1] k)= Hatk+1] k), k+1]

P (k+11k)=J, P(k+1] k), +R(k+1)

29

where J;;J,, F,, denote the Jaccobian matrices of the
process and measurement models, and the predicted
measurement covariance, respectively.
2. Estimated quantities at time step k+1 with the
new current measurement at time step k+1

F+ 1| k1) =3+ K) -+ + Dk +1)

PUe+1| k1) = P+ K)— Wk +DP, (k+1] KW k+1)
Wk+1)=z(k+D)-3(k+1) k)

Wike+1) =P, (k-+1{ D (k+1| k)

(30)

where W(k+1), v(k+1), and P,, represent the Kalman
gain, the difference between actual measurement and the
predicted measurement, and the cross-covariance, respectively.

In this paper the relative distance, speed, and the attitude

Mol - XS5 - AlARBS =2 M 13 &, A 10 = 2007. 10
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Fig. 3. Illustration of measurement geometry between two
satellites.

of the chief satellite are to be used for measurements to
estimate the relative state, which enable an autonomous
formation flying without any assistance from external
system such as GPS, just employing the laser range finder,
doppler radar, and the attitude information from its own
system. This measurement system is very attractable in that
it is relatively simple and cheap providing enough accuracy
for formation flying. Fig. 3. shows the illustration of
measurement geometry between two satellites.

N°, B¢, B and L denote LVLH frame, chief satellite's
body frame, deputy satellite’s body frame and sensor frame,
respectively. We assume that the origins of W~N° B¢ L
frames coincide with each other because the offset distance
of laser range finder from the center of the chief satellite
is small enough compared to the relative distance between
two satellites. The relative position vector between two
satellite can be obtained through the coordinate
transformation, which makes use of the information of
relative distance and the attitude of chief satellite equipped

with laser range finder.

L
r

R LVLH — C;,CVLH Cfc 0 (31)
0

where C’érVLH, C’LB ° represent the rotational matrices which
convert a vector expressed in the chief satellite’s body
frame to a vector expressed in the LVLH frame and
convert a vector expressed in the sensor frame to a vector
expressed in the chief satellite's body frame, respectively,
and REVIH ;. denote the relative position vector between
two satellites expressed in the LVLH frame and relative

distance measured from laser range finder, respectively.
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We assume that the laser range finder is aligned along
the x axis of sensor frame and the attitude of chief satellite
with respect to the LVLH frame is known very accurately
to the extent of 0.001s degree from secondary attitude
measuring devices such as star sensor and sun sensor. The
relative vector obtained in Eq. (31) suffices to estimate the
relative state, however, for the sake of information
redundancy we adopt relative speed as additional
measurement, which is obtained from a doppler radar. The

measurement vector is given by
/I = [RLI/LHT p]f (32)

where p= (zz +yy+ 2z)/p represents the relative range
rate.

Note that the measurement vector is originally linear, but
becomes nonlinear one due to the augmented additional
measurement. Taking the partial derivative of the
measurement vector with respect to the states yields the

output sensitivity equations as

1 0 0 0 0 0
1 0 00 0
Y
& = 0 1 060 0] (33
=y .
P E G B x oy 2
g P P pppPp

where p= /2?4147 +2> denotes relative range between
two satellites.

1V. Simulation Results
In this section the simulation results are presented, which

® LAl HetE.
Table 1. Simulation parameters.

Simulation Data
eccentricity 0.001/0.03
Chief -
Satellite Altitude 700km
Inclination 20deg
Q diag[(107"/7.) ]
. is the radius of the chief
I diag{(3x107° /1))
R 7. is the radius of the chief
I diagl(3x10™ /7). ;]
EKF . is the radius of the chief
. [5%107% 3x107° 4x107°
Initial 1x107% 1x107% 1x107%7”
State
Error I [5x107% 3x107° 4x107
1x1073 1x107% 1x1073)7
P(0) [2(0) = H(0)][x(0) — #(0)]”

show the performance of EKF as estimator to estimate the
relative state with the relative range coupled with the
attitude of satellite, and the speed between two satellites,
considering the effects of the .2 geopotential disturbing
force, atmospheric drag and eccentricity in the chief
satellite’s orbit. The initial conditions and methodologies
described in section 2 are chosen to guarantee that the
relative orbit geometry remains bounded. The simulation is
conducted for 2 orbit periods with a interval of 1 degree.
The measurements have been used to update the a priori
states with the same rate of system propagation. The
simulation parameters are described in Table 1.

Fig. 4~9. show the true and the estimated relative
motions between the chief and deputy satellites under the
effect of £ geopotential disturbance and atmospheric drag
with eccentricity of 0.001/0.03, respectively. It turns out
that the application of the EKF to the relative state
estimation with range coupled with satellite's attitude and

z-axis(km)

2.996

1

_axi 2.994 - E
y-axis(km) 1 x 107

x-axis(km)

a8 4. FF 4 $R(e14E 1 0.001).
Fig. 4. Estimated position with eccentricity of 0.001.
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speed information as their measurements brings forth good

performances for moderate errors in the intial states and the

measurements.

V. Conclusion

In this paper Extended Kalman Filter has been designed

to estimate the relative states of two satellites taking

account of the effect of ., geopotential disturbing force,

atmospheric drag, and the eccentricity in the chief orbit,

exploiting the relative range, speed, and the attitude of

chief satellite as measurements.

all

Simulation results indicate that it is possible to estimate

the state variables through the EKF using

aforementioned measurements with moderate errors without

any additional information from external sources.
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