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In this paper, the propagation of an intense laser beam in a collisional plasma channel is studied
analytically, and the investigation is focused on the self-focusing due to the Kerr nonlinearity, the
relativistic nonlinearity, and the electron density perturbation. The propagation of laser, including
the effects of diffraction, the plasma channel, the 3rd Kerr nonlinearity, the relativistic self-focusing,
the electron density perturbation, and the defocusing due to electron collisions, is analyzed. The
source-dependent expansion (SDE) method for analyzing the wave equation is introduced and em-
ployed in the paper.
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I. INTRODUCTION

The propagation of ultrashort intense laser pulses has
received considerable attention due to its wide range of
applications, such as plasma-based acceleration, X-ray
generation, optical harmonics generation, ultrabroad-
band radiation generation, and “fast ignition” schemes
in laser fusion. A long propagation distance in the
medium is desirable in these applications. There are
many theoretical, numerical, and experimental works [1],
and there are many instabilities and phenomena, such
as self-modulation [2], the filamentation instability [3],
plasma waves [4], group-velocity dispersion (GVD), fi-
nite pulse effects [5], relativistic self-focusing effects [6],
etc., in this field.

In this paper, we will investigate the propagation of
intense laser pulses in a plasma channel, in which the
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relativistic self-focusing associated with the relativistic
factor γ =

√
1 + a2 (a = 8.5×10−10I1/2λ0(Wµm/cm2)]),

the third-order intensity-dependent nonlinearity [7], and
the electron density perturbation will be studied theoret-
ically. The refractive index equation of an intense laser
beam in a partially stripped, pre-formed plasma channel
is derived and includes collisions in the plasma. We in-
troduce the source-dependent expansion (SDE) method
and use it to solve the refractive index equation. The
solutions are the evolution equations of the electric pa-
rameters, i.e., the wave curvature, the spot size, the am-
plitude, and the phase.

II. THE REFRACTIVE INDEX EQUATION

Starting from Maxwell’s equations, ultrashort intense
laser propagation in a partially stripped plasma medium
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is given by(
∇2 − 1

c2
∂2

∂t2

)
E(r, t) =

4π
c2

(
∂2P

∂t2
+
∂J

∂t

)
, (1)

where E(r, t) is the electric field, P is the polarization
associated with bound electrons, and J is the plasma
current density associated with free electrons. The elec-
tric field is assumed to be linearly polarized in the x
direction and takes the form

E(r, t) =
1
2
E(r, t)eik0z−iω0tex + c.c. (2)

Based on Eq. (2), we will derive the evolution equation
for the electric field, i.e., the refractive index equation.

The polarization and the plasma current density can
be divided into linear and nonlinear parts. The linear
parts are given by

∂2PL
∂t2

= −ω
2
0

4π
(η2
L − 1)E(r, t),

where the refractive index of the plasma is divided into
linear and nonlinear parts, i.e., η = ηL + ηNL, ηNL =
η2I, and

∂JL
∂t

=
ω2
pe

4π
· ω

2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

E(r, t),

respectively, where ωpe is the unperturbed value of the
electron plasma frequency ω2

p = 4πnee2/m, ne being the
electron density, and the second factor is the contribution
of the collisions of electrons in terms of the collision time
τe. The nonlinear polarization satisfies

∂2PNL
∂t2

= − c
3ηL

8πpa
| E |2 E(r, t),

where pa = 2πc2/ω2
0ηLη2 is the critical power for third-

order nonlinear self-focusing with I = (cηL/4π)〈E · E〉
being the time-averaged laser intensity. The nonlinear
plasma current density satisfies

∂JNL
∂t

=
ω2
pe

4π
· ω

2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

(
δne
ne
− δm

m

)
E(r, t),(3)

where the two terms on the right-hand side of Eq. (3)
represent the perturbation of the electron plasma wave
(associated with the ponderomotive force effect) and the
change of the electron mass due to the relativistic ef-
fect, respectively. The electron density perturbation
[1] and the relativistic mass change [2] are δne/ne =
(c2/ω2

pe)∇2
⊥γ = (c2/ω2

pe)∇2
⊥(1 + a · a)1/2 and δm/m =

a·a/2, respectively, where a = eA/mc2 is the normalized
vector potential. Using the critical power of plasma rel-
ativistic self-focusing, pp = 2cηL(ω2

0/ω
2
pe)(e/re)

2, where
re = e2/mc2 is the classical electron radius, one obtains

∂JNL
∂t

=
ω2

0τ
2
e − iω0τe

1 + ω2
0τ

2
e

(
− c

3ηL
8πpp

· | E |2

+
c2

4π
1

4γ
e2

m2c2ω2
0

∇2
⊥ | E |2

)
E(r, t).

Therefore, with the approximations | ∂E/∂z |�| k0E |
and | ∂E/∂t |�| ω0E |, the evolution Equation for the
electric field, which we call the refractive index Equation,
is(
∇2
⊥ + 2ik0

∂

∂z

)
E = k2

0

{
1−

[
η2
L −

ω2
pe

ω2
0

ω2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

+
c2

ω2
0

(
1
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+
1
pp
· ω

2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

)
cηL
2
| E |2

− 1
4γ

e2

m2ω4
0

∇2
⊥ | E |2

ω2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

]}
E, (4)

where the wave number k0 = ω0/c. The real terms on
the right-hand side of Eq. (4) represent the effects of
the diffraction, the plasma defocusing, the third-order
intensity-dependent self-focusing, the relativistic self-
focusing, and the electron density perturbation, respec-
tively, while the imaginary terms represent the plasma
absorption.

III. THE SOURCE-DEPENDENT
EXPANSION METHOD

The source-dependent expansion (SDE) method is an
effective method for solving the paraxial wave equation
with nonlinear source terms, i.e., (∇2

⊥ + 2ik0∂/∂z)E =
k2

0(1 − η2
r)E, where ηr is the total refractive index. In

the source-dependent expansion (SDE) method, the elec-
tric field is expanded in a complete set of orthogonal
Laguerre-Gaussian functions. These functions are im-
plicit functions of the propagation distance z through
electric field parameters such as the spot size, the wave
curvature, the amplitude, and the phase. The electric
field can be described by four coupled differential equa-
tions in the field parameters.

In the following discussion, the electric field is de-
scribed only by a single Laguerre-Gaussian mode. In
general, the pulsed beam can be written in terms of a
complete set of Laguerre-Gaussian functions

E(r, t) =
∑
n

ÊnLn(χ) exp[−(1− iαs)χ/2], (5)

where n = 0, 1, 2, ..., Ên is the complex amplitude,
χ = 2r2/r2

s , αs is the wavefront curvature, and Ln(χ)
is a Laguerre polynomial, e.g., L0 = 1 and L1 = 1 − χ.
After a calculation (the details are given in Ref. [8]),
the equation for the complex amplitude is given by(

∂

∂z
+An

)
Ên − inBÊn−1 − i(n+ 1)B∗Ên+1

= −iHn, (6)

where

An =
ṙs
rs

+ i(2n+ 1)[
1 + α2

s

k0r2
s

− αs
ṙs
rs

+
α̇s
2

],
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B = −αs
ṙs
rs
− 1− α2

s

k0r2
s

+
α̇s
2
− i
(
ṙs
rs
− 2αs
k0r2

s

)
,

Hn =
k0

2

∞∫
0

dχ(1− η2)ELn exp[−(1 + iαs)
χ

2
].

The dot denotes the operator ∂/∂z and the asterisk de-
notes the complex conjugate.

In the following, it is assumed that the fundamental
Gaussian (n = 0) mode can describe the laser dynamics
sufficiently. Assuming | Ê0 |�| Ên | for the SDE mode
(n ≥ 1), from Eq. (6) (with n = 0, n = 1), one obtains

B =
H1

Ê0

(7)

and(
∂

∂z
+A0

)
Ê0 = −iH0. (8)

Using Eqs. (7) and (8) and setting Ê0 = Es exp(iθs), one
obtains

αs =
k0rsṙs

2
+
k0r

2
s

2
TI , (9)

∂p

∂z
= 2SIp, (10)

∂θs
∂z

= − 2
k0r2

s

− SR − TR, (11)

∂2rs
∂z2

=
4

k2
0r

3
s

(
1 + k0r

2
sTR −

k2
0r

3
s ṙs

2
TI

−k
2
0r

4
s

4
ṪI −

k2
0r

4
s

4
T 2
I

)
, (12)

where S = H0/Ê0 and T = H1/Ê0, i.e.,

S =
k0

2

∞∫
0

dχ(1− η2
r) exp(−χ), (13)

and

T =
k0

2

∞∫
0

dχ(1− η2
r)(1− χ) exp(−χ). (14)

The laser power is given by p = E2
sr

2
s · cηL/16, and the

subscripts R and I represent the real and the imaginary
parts of the functions, respectively.

IV. THE SOLUTION TO THE
PROPAGATION EQUATION

From Eq. (4), one obtains

η2
r = η2

L −
ω2
pe

ω2
0

ω2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

+
c2

ω2
0

(
1
pa

+
1
pp

ω2
0τ

2
e − iω0τe
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0τ

2
e

)
cηL
2
| E |2

− 1
4γ

e2

m2ω4
0

∇2
⊥ | E |2

ω2
0τ

2
e − iω0τe

1 + ω2
0τ

2
e

, (15)

where the plasma frequency satisfies a parabolic pro-
file, i.e., ω2

pe = ω2
pe0(1 + 4nr2/n0r

2
ch), with rch being

the channel width, 4n the density width of the plasma
channel, and ωpe0 = ωpe(0) the electron plasma fre-
quency in terms of the on-axis electron density n0, and
| E |2= E2

s exp(−χ). If Eq. (15) is substituted into
Eqs. (13) and (14), the real and the imaginary parts of
the functions S and T are given by

SR =
k0

2

[
1− η2

L +
ω2

0τ
2
e

1 + ω2
0τ

2
e

·
ω2
pe0

ω2
0

(
1 +
4n
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r2
s

2r2
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)
− 4p
k2

0r
2
s

(
1
pa

+
1
pp
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0τ
2
e

1 + ω2
0τ

2
e

)
− 8
γ

e2

m2ω4
0cηL

p

r4
s

· ω2
0τ

2
e

1 + ω2
0τ

2
e

]
,

SI =
k0

2
· −ω0τe

1 + ω2
0τ

2
e

[
ω2
pe0

ω2
0

(
1 +
4n
n0

r2
s

2r2
ch

)
− 4
k2

0r
2
s

p

pp

− 8
γ

e2

m2ω4
0cηL

p

r4
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]
,

TR =
k0

2

[
− ω2

0τ
2
e

1 + ω2
0τ

2
e

·
ω2
pe0

ω2
0

4n
n0
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s

2r2
ch

− 2p
k2

0r
2
s

(
1
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+
1
pp
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0τ
2
e
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e

)
− 8
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e2

m2ω4
0cηL

p

r4
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0τ

2
e
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0τ

2
e

]
,

TI =
k0

2
· ω0τe

1 + ω2
0τ

2
e

(
ω2
pe0

ω2
0

4n
n0

r2
s

2r2
ch

+
2

k2
0r

2
s

p

pp

− 8
γ

e2

m2ω4
0cηL

p
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s

)
.

Then, according to Eqs. (9), (10), (11), and (12), the
evolution Equations of the electric field parameters are

αs = ZRRṘ+
ω0τe

1 + ω2
0τ

2
e

(
p

2pp
+

p

pd

k0ZR
R2

)
+

1
ω0τe

4n
24nc

R4, (16)
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∂p

∂z
=
−k0ω0τe
1 + ω2

0τ
2
e

(
ω2
pe0

ω2
0

− 2
k0ZRR2

p

pp

− p

pd

2
R4

)
p− p

ω0τe

4n
4nc

R2

ZR
, (17)

∂θs
∂z

=
k0

2

(
η2
L − 1− ω2

0τ
2
e

1 + ω2
0τ

2
e

ω2
pe0

ω2
0

+
p

pd

4
R4
· ω2

0τ
2
e

1 + ω2
0τ

2
e

)
+

1
ZRR2

(
3p
pcrit

− 1
)
, (18)

∂2R

∂z2
=

1
Z2
RR

3

(
1− 4n
4nc

R4 − p

pcrit
− ω2

0τ
2
e

1 + ω2
0τ

2
e

A1

− 1
ω0τe

A2 −
1

ω2
0τ

2
e

A3 −
1

1 + ω2
0τ

2
e

A4

− ω0τe
1 + ω2

0τ
2
e

A5 −
ω2

0τ
2
e

(1 + ω2
0τ

2
e )2

A6

)
, (19)

where

A1 =
2p
pd

k0ZR
R2

,

A2 =
24n
4nc

ZRR
5Ṙ,

A3 =
(
4n
4nc

)2
R8

4
,

A4 =
4n
4nc

p

pd
k0ZR

(
R2 +

1
R2

)
,

A5 =
2p
pd

k0Z
2
RṘ

R
− 4p
pd

k0Z
2
R

rs0R5
+

p

pp
ZRRṘ,

A6 =
5p2

4p2
p

+
p2

p2
d

k2
0Z

2
R

(
1
R4

+
2
R8

)
+

2p2

pdpp
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(
1
R2

+
1
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)
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ω2
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ω2
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(
p

2pp
k0ZRR

2 +
p
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k2
0Z

2
R
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)
.

The spot size R = rs/rs0 is normalized by the initial
spot size, ZR = k0r

2
s0/2 is the Rayleigh distance, pd =

γηLm
2ω2

0c
3Z2

R/e
2, whose dimension is the same as that

of the power p, the density width for channel self-guiding
is given by

4nc =
r2
ch

πrer4
s0

· 1 + ω2
0τ

2
e

ω2
0τ

2
e

, (20)

and the total critical power of the nonlinear self-
focusing including the third-order intensity-dependent
self-focusing and the relativistic self-focusing is given by

1
pcrit

=
1
pa

+
1
pp

ω2
0τ

2
e

1 + ω2
0τ

2
e

. (21)

From Eq. (16), Eq. (17), Eq. (18), and Eq. (19), we can
obtain all the information of the electric field. p/pp,
p/pd, 4n/4nc, p/pcrit, and ω0τe represent the effects of
the relativistic self-focusing, the electron density pertur-
bation, plasma channel, the nonlinear self-focusing, and
plasma collisions, respectively. Furthermore, according
to the envelope equation, i.e., Eq. (19) and the magni-
tude of ω0τe, the analysis of the laser propagation can
be reasonably simplified.

When the collisions are not taken into account, i.e.,
the electron collision time τe is infinite and the refractive
index is a real number, the familiar results

αs = ZRRṘ =
ZRR

2

Rc
,

are obtained, where Rc = rs/ṙs = R/Ṙ is the wavefront
radius of curvature,

∂p

∂z
= 0,
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∂z

=
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2
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0
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4
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)
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1
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− 1
)
,
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1
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3
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p
′
crit

− 2p
pd
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)
,

and the density width and the total critical power are

4n
′

c =
r2
ch

πrer4
s0

,

and
1
p
′
crit

=
1
pa

+
1
pp
.

When the collisions are great, i.e., ω0τe � 1, the corre-
sponding results are given by

αs = ZRRṘ+
1

ω0τe
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24nc

R4,
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,
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2
e
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)
,
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where A2,3,4 are all strongly related to the density width
of the plasma channel 4n. From the above four equa-
tions, we conclude that the collisions cause a linear de-
crease in the laser power, have little effect on the phase
of the laser, and lead to a close relationship between
the laser spot size and the electron density width in the
plasma channel.

In the middle of the two cases mentioned above, there
is a complicated case. For example, we take the laser
wavelength λ0 = 0.8µm, the initial spot size rs0 =
100µm, the electron density of the plasma channel axis
n0 = 1018/cm3, pp/pa ' 5 × 103, 4n/4nc = 1, and
ω0τe ' 1. Then, we have

αs =
5π
4
RṘ+

R4

2
+

1.8× 10−2

πγ

1
R2

+
p

4pp
,

∂p

∂z
= −2× 102

9
p− 4

5π
pR2 +

4
5π

p2

ppR2
,

∂θs
∂z

=
π × 105

8
(η2
L − 1)− 102

9
+

1.2× 104

π

p

ppR2
,

∂2R

∂z2
=

0.64
π2

1
R3

(
1− 5× 103 p

pp
− 5

16
p2

p2
p

−R4

+
125π
18

p

pp
R2 +

1
2γ

p

ppR4
+

9
γ

p

ppR5
− 4
γ2R8

)
,

where it has been assumed that the length of the plasma
channel is similar to the Rayleigh length of the laser, that
the terms related to Ṙ can be neglected in the study of
the laser spot size, and that the initial laser power is the
critical power of the plasma relativistic self-focusing. In
this case, the spot size of the laser is mainly determined
by the density of the plasma and the power of the laser.

V. DISCUSSION AND CONCLUSION

In this paper, using the source-dependent expansion
method, we have studied the propagation of an intense
laser beam in a partially stripped, pre-formed plasma
channel. The effects of diffractions, third-order intensity-
dependent self-focusing, relativistic self-focusing, self-
guiding of the plasma channel, and collisions in the
plasma are analyzed in detail.

The propagation equation in the collisional plasma,
i.e., the refractive index equation, is derived. In that

equation, the equivalent refractive index includes the
linear parts of the medium and the plasma, the non-
linear parts associated with the third-order intensity-
dependent, the relativistic self-focusing effects and the
electron density perturbation, and the imaginary parts
associated with collisions in the plasma corresponding to
the plasma absorption. The solutions are derived by us-
ing the SDE method introduced in this paper and are
four differential equations in the electric-field parame-
ters, i.e., the wave curvature αs, the spot size rs, the
laser power p, and the phase θs. These equations can be
simplified based on ω0τe and can be reduced to a simple
form in a non-collisional plasma, and the solutions are
given for two typical cases, i.e., ω0τe � 1 and ω0τe ' 1.
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