9AE AAAGE BHAY ; 99

A AN A F A7
(SOOA : A Stepwise Object-Oriented Analysis Method)

g & oaz" oFL" 2™ wss3™ w23 Mia Msah™

(Cheong Youn) (So-Ran Inn) (Kwon-Il Lee) (Seung-Hoon Cha) (Doo-Hwan Bae) (Bo-Gyun Byoun)

o @A ALHE AAAY BY WHEL B4 7IWE H&7] A Aade pAE AAE
T olE o] A5 U AbE AAg aFEe, dA B3 A2sle 2499 sed dAS 7Y
A1 Aok olHF HIZ WHEL 7RI FAAY & okl diste] & 4 Al="de H 857 4
U AR FER & A2 AzHed Fgsvlede A7 ok B EFMWE HARNGE F40 A&
g F Ae B FJ2 P 712 dAH ZEY IS AL o] HI I fYrt AL
g 2E ARE vE fod £ ge A2E BorE BAsked v F85A AT F ATk B =
BelMe o] HT Wi v FA Aul2gl B-ISDN AHl2 2dde] HE&fhu 33 2H4s &
< & Uee EAch

Abstract Current approaches in Object-Oriented Analysis have limitations on modeling complex
real systems because they require the prior knowledge about objects and their interactions before
applying the analysis techniques. This is possible in small or well known systems but in large real
systems this may not be feasible. We suggest a stepwise refinement based top-down engineering
approach to Object-Oriented Analysis. This approach is especially good for new areas where we do
not know all the information in advance. We applied this approach to the B-ISDN service modeling

and distributed systems and found encouraging and promising results. “

1. Infroduction

The current Object-Oriented

Analysis are severely restricted in their application

approaches to

to modeling complex real systems because they
require the prior knowledge about objects and their
Object-Oriented
techniques. These can f)e easily applied to small
systems because the functionality of the system is
mostly

interactions before applying the

well understood already or easier
tEa8e: Fdoigw FAFEdets g
H2A34Y : FRAABAATY W FHATAF
H g 8 ESEASAETY AYdTd
H o8 9 SysiseiTe a7d
T 2A39 . @Eied AR R ST ay
CotHT] 3 9 gl ARe R
Professor in the faculty of Computer Science

Hitt w) 3 9
e . at the GIK I'stitute of Engineering Science
and Technology, Pakistan

=EHS 19969 109 289
e AAgE 19973 89 2749

to find out. But in complex systems such as in
new areas of informationm and communication
information about objects and their
interactions is difficult to have in advance. In this
case a different Object-Oriented analysis approach
needs to be used which can make the modeling of
such systems easier for the analyst and developer.
Here we present an approach which takes the
fact into account that modeling complex systems
can not a prior knowledge of the
and the internal detail of the
systems. This approach combines two simple but
very powerful ideas in to the modeling process of
OOA. The first one is the use of use cases to the
OOA. This is not a new- idea and has been
prbposed and applied by Jacobson in OOSE [1]. In
addition, it has been used in OMT [7] and also
incorporated ‘in the initial ‘draft of the Unified
Method [8]. Hov.veve;, our application of this idea

technology,

assume
functionalities

100 B3 =AB) A B A A 1 5(@RBD

to the OOA is to determine the initial objects and
their interactions with the users of the system. The
use cases can be used to find events between
objects and the users and their responses.

The second concept used is the application of a
black-box and white-box concept to the OOA
modeling. This concept has been used primarily
software testing techniques, introduced by Myers
[13]. The merits of this concept have been well
publicized modularity and abstraction as tools to
simplify the process of analysis and design.
However it has not been applied as such in the
Object-Oriented Analysis methodologies because it

was considered close to the functional techniques

such as Structured Analysis [2] rather than the -

Object-Oriented approaches.

In our approach, initially the whole system is
considered as a black-box. So the analyst and
developejx“: ’;only‘ ‘considers one ‘object that is the
system ahdi,ts users. At this stage, the interactions
between thé‘systern and users are identified. This
can be done by looking at each use case and also
from the- problem domain such as a problem
statement. The. primary focus here is on capturing
the user requirements. Obviously they can be more
easily found out from the use cases. Since use
cases only consider the interactions between the
users and the system, the level of abstraction at
this point in time is the highest possible in the
analysis approach. This approach at each level
hides the complexity of the system from the user.
At the next level, the system is considered as a
white-box. Objects found from the use cases and
the problem domain are studied. Their interactions
and associations (b‘etweenl the objects within the
system) are also found and modeled. At this level,
information from the previous step are used.
Objects and their interactions are found and their
interactions are described.

If an object identified here is complex, Wwe -can
apply the ~same concept to .the object. This
recursion continues to -as mam:]‘ le'vels as are
feasible for a particular system. Taking éach object
in turn, its complexity is judged and if possible it

is decomposed into further (sub)objects and their
interactions. This is the black-box and white-box
concept in recursion. Obviously this process of
decomposition of objects depends on the complexity
of the system involved. So several levels may be
needed

small simple systems only one or two levels may

for a very complex system whereas for

be enough.

Application of use cases, in this way, to discover
black-box objects and then the use of white-box
technique has as such not been the focus of
attention of other Object-Oriented development
methods (for example, the OMT, OOADA, OOSE,
and the Unified Method). In a limited sense, the
concept of a composite object (an object composed
of other objects) is close to a black-box. However,
this concept is considered less important and rarely
used.

2. Background

The Object-Oriented techniques for the Analysis
and Design processes have been proposed and
applied in industrial
environments over “past many years with varying
degrees of success. \Some of the ‘more popular
approaches are Rumbaugh’s OMT {3], Booch's
OOADA [4], Jacobson’'s OOSE [1], and
Shlaer-Mellor Method [5] [6].

The concept of

academic as well -as

use case was ‘proposed by
Jacobson in his OOSE [1]. Since use cases are
very helpful in determining user requirements, the
concept has gained widespread acceptance in the
Object-Oriented community. It has found usage in
many Object-Oriented Analysis and Design
methods like OMT in its second version [7] and
OOADA [4]. It has even been incorporated in the
Unified Method (combined method formed from
OMT and OOADA methods) (8]. '

However, Jacobson applies the use case concept
throughout the Object—Orienbed life cycle. The
Unified Method [8] . also. incorporates similar
concept to the determination of objects and their
associations as well as interface properties of the
system. We only initially consider use cases to find

A AAAE EA7H 101

objects and their interactions but do not extend this
idea to other levels of the Object-Oriented
Analysis.

The use cases have also been in some other
methods. For example, the MOSES method by
Henderson-Sellers [12] provides activities, guide-
lines, and deliverables for all aspects of an OO
project. It has different graphics and text models
for different phases of the development process.
One of those activities is the Scenario Development
(essentially the use case concept). The purpose is
to describe an interaction with a system from
which O/Cs (MOSES term for Class & Objects; A
class with object instances), events and interactions
can be found. MOSES uses scenarios for identi-
fying operations and develops them for different
subsystem responsibilities.

The concepts of black-box and white-box have
been used in software testing. It was originally
introduced by Myers in [13]. The black-box is
treated as one single entity and only its externally
visible functionality along with its interactions with
other objects in the environment are considered.
Nothing inside the black-box is visible. This is an
abstraction concept and reduces the complexity of a
system which is being considered as the black-box.
This concept has, therefore, been the focus of
attention in many testing techniques. These are
generally called black-box testing techniques as
they ignore the inner details (such as the code and
its control flow etc.) and focus only on the
externally visible functionality of the system.

In many respects, an object represents a
black-box. Its inner details like the process logic
and data is hidden from other objects. However, it
is not partitioned into sub-objects. Instead, such a
relationship between a complex object and its
sub-objects is characterized by a composition
relationships. Hence generally Object-Oriented Ana-
lysis and Design methods are bottom—up methods
in their application. - _ .

..-We show this relationship explicitly by using
decomposition of large objects, treated initially as
black-box, into sub;objects. Somewhat similar idea

has been used in the approach by Martin and Bell
in Object-Oriented Analysis and Design (QOAD) [9
1. As stated earlier, this is somewhat related to the
composition concept also found in other Object-
Oriented techniques discussed above (where it is

‘one of several types of relationships). However the

OOAD focuses on the events and objects of the
system. The approach can be either applied in a
top-down or a bottom-up manner. The authors
recommend the use of Object Flow diagrams for
this purpose.

Our approach differs from the above methods in
several ways. First. and foremost it explicitly uses
the concept of black-box and white-box. Secondly,
we don t only focus on objects and events, we use
the interactions as well as associations between the
objects. Thirdly, we use use cases with the
black-box concept to find the above things (objects,
interactions and associations). Finally, ours is a
recursive approach.

3. The Stepwise OOA (SOOA) Approach

In summary the SOOA
described as follows: '

Initially the system is treated as a black-box. Its
inner details are not considered at that level. Only
its interactions and associations with the users are
considered. After that is done, the system is
treated as a white-box and will be decomposed
into more objects and their related interactions and
associations in the next level. Hence at each level
a black-box
the successive levels they are considered as
white-boxes

approach can be

objects are considered and then at
and decomposed into a more
black-boxes. Thus, a complex system may have
several levels of decomposition whereas a simple
one will have only a few (possible .one) level of
decomposition.

" In this section, we describe the SOOA approach
in detail. - The sfeps serve as guidelines to the
approach. In the next section we demonstrate the
application of the SOOA approach by taking an
example system.

The SOOA approach contains two main stages:

102 AR =EA®B) A 5 W A 1 2(®BD

first is the black-box stage and the second is the
white-box stage. The whole process consists of
applying these two stages in recursion to the
required level of simplicity.

3.1 Consider the system as a black box

In this stage the whole system is considered as
a black box. There is only one object and that is
the system. We ignore the inner details and the
working of the system. For example in figure I,
the system is seen as just one black-box by a
user who has no idea of what is inside the box.
But, he/she can use the system using the two
levers on top to get some predetermined
functionalitv. However, unless the user knows what
functionality can be provided by the system and
how to operates(the sequence of wuses of the
levers), the system cannot be used with predictable
results. :

In this step, first of all we identify the actors
that use the system. This includes the users in
their different roles as they use the system for
different purposes and goals. A user may play
different roles with the system for doing different
transactions with the system. Each role is
identified. Then we identify the use cases for each
role. We describe the interactions that take place
between the system and the actor of the use case.
Considering figure 2, we have a system with
predefined functionality, known to the user in terms
of the use caases. Hence the user can follow
different use cases with the system. Each use case
is a sequence of interactions between the user and
the system (achieved by pressing the levers up or
down in certain sequence). In that sense, figure 2
shows a system as a ‘usable black-box’

Once the description of each use case has been
developed, we identify objects from each use case.
Use cases contain nouns many of which qualify as
objects within the system. They are considered as
potential objects. Then each potential object is
scrutinized to determine if it is mdeed an object.
Here we differ from OMT [3] and OOADA [4] in
that the complex objects are rejected in these
approaches . while we - consider them ~ as - valid

objects.

Fig. 1 A black box representing the sytem

Next, we identify events from each use case.
Events are symbolized by interactions and their
responses between users and the system. Each
interaction between these is taken as an event and
its appropriate response is generated by the system.
So we list these events.

3.2 Consider the system as a white box

In this stage the system is considered as a set
of objects. We examine the details of the system
by looking at the component objects (or sub-
objects) and their interactions among themselves.
There is only indirett consideration for the user at
this stage because we are looking at the inner

functionality and structure to fulfill the user

requirements (which are really to support the use

cases).

Using information of the black-box stage (use
cases, events, objects, and interactions) as well as
the knowledge from the problem domain (including
a problem statement identify
objects. Although many of the objects can be
identified from the use cases,

if it exists), we

there are some
objects which cannot be identified from the use
cases. This is due to the fact that use cases
directly represent only the aspects
(interactions) and data of a system seen by the
user. So only the objects participating in the
interactions which are part of the use case can be
identified. However, have
objects which do not participate in any use cuse
and are part of the structure of the system (hence
they display static _properties of the system). They

dynamic

a system may well

A AAAE A7 103

can be identified by looking at the static as well as
dynamic aspects of the system.

Using the above information domain, we now
identify interactions between the objects of the
system and the actors and also the interactions
between the objects themselves including any
associations. While the former are easier to identify
because they are part of the use cases, the latter
type of interactions and associations have to be
found from the problem statement or the problem

domain knowledge.

Fig. 2 A blacek—hox with use cases

3.3 Apply The Above Stages Recursively

The above two stages are applied recursively. In
this first instance, the system is treated as a
black-box and the above mentioned steps applied.
Then the same system is treated as a white-box
and decomposed into éeveral objects and their
interactions and associations at the next lower
level. ' »

Then the same stages are repeated at the next
level. That is by treating each object first as a
black-box and interactions and
associations with other objects and then treating
the same object as a white-box to decompose into
further sub-objects and their related interactions
and associations to the next level of .the hierarchy.
This process is recursively repeated until suffi-
ciently simple objects are found. This makes the
SOOA approach recursive,

The determining factor for the recursion is the
complexity of the objects involvéd. The complexity
of an object can be determined by looking at the
interactions between 't:he_fparticu]ar object and other

identifying its

objects, and the data that is passed between them
during those interactions.

These three steps are applied in sequence.
However within steps described in sections 3.1 and
3.2, the sub steps can be applied in parallel. For
example the identification of objects, events, and
use cases can be done in parallel. Some objects
may be identified with their use cases and events
and then more of these can be added later.

At this stage, One of the practical issues to be
the possibility of the occurrence of redundant
objects in different subcomponents. Such overlapped
filtered by their

Since objects having different names

objects can be comparing
behaviors.
may indicate the same object in the real world, the
object’s behaviors must be compared carefully. In
order to facilitate this filtering process, we may use
objects/classes dictionary in which objects/classes

name and level number of refinement are recorded.

4. An Application of the Approach

In this section, we demonstrate the effectiveness
of the SOOA approach. The example system is
'from the telecomrguxﬁcation field. It was chosen
because it represents a broad range of complex
systems for which no prior knowledge can be
while Object-Oriented
Analysis and Design methodologies.

assumed applying the

The system we have chosen is one of a broad
range of services provided by a B-ISDN network
[14). It is called Video conference service [15]. A
standard Video conference is a specific multi-
media, multiparty service that provides two or more
geographically separate users with the capacity for
exchanging different types of information such as
images, data etc. Here we will
present a brief statement of the problem (con-

audio, moving

sidering a much simplified video conference) and
then discuss the application of the SOOA approach.

A Video conference provides the necessary
arrangements for real-time conferencing in which
both voice and moving picture video information
can be exchanged together with optionall non-

moving visual information, signaling information

104 AEREI=FAB) A B A A 1 3(@®BD

such as identification of speaker, etc. among single
individuals or groups of individuals at two or more
locations.

This Video conference service will provide con-
ference management functions such as conference
setup, identify participants on the video conference,
connect participants to a conference. disconnect
conference participants, terminate the video con-
ference, floor grant, identification of speaker, and
control of speaker s microphone. These functions
will only be available to the conference chairman.

In addition,
handling functions of audio and video and func-

participants are provided terminal

tions of signals such as floor request. fax transfer,
still picture transfer, text transfer, etc.

When the chairman will request video conference
to be opened, at that time the terminal will validate
the qualification of the chairman. If he/she is
qualified, then initial screen will be displayed. Other
participants should be ready to
invitation rhessage.

If the chairman selects the menu called open
video conference, a dialog box. will be displayed. At
this time, the. chairman can enter the conference
name and select the participants from the list or
enter new participants.

After the chairman selects the conference and the
participants, he/she presses the necessary button to
confirm the action. The system will then send

receive the

invitation request message to the selected
participants and wait for. their reply.

When the system sends invitation request
message to the expected participant, his/her

terminal will display conference name and the name

of the chairman. The participant can choose one of

three options:

1) join the conference: In this case the participant
selects the acceptance button, the system will
send acceptance message to the chairman and
display ~ wait a minute = message to the
participant. . ,

2) not join the meeting: In this case the participant
Selects, the refuse buttof, the system will send
the refusal message to the chairman and go to

the previous state. ,

3) make no reply: This is judged by the system by
using a timer. If the participant does not reply
for a given period of time, the system will send
the refusal message to the chairman and go to
the previous state.

As replies arrive, the dialog box will show the

response of the participants. Then the chairman

has the right to open cancel the conference. If the
conference is:

1) opened by the chairman, the system will display
opening message to the chairman and the
participants and open the conference.

2) canceled, then the system will display the
conference got canceled to the chairman and
the participants and the conference will
terminate.

When opening message comes from chairman the
system will be in opening state . This is done by
displaying a dialog box showing the information of
the Video conference. If a participant presses the
confirm button, the dialog box will be displayed
with the above conference information. If the
cancellation message came from the chairman then
it will be notified to all participants and the system
will close.

4.1 Applying the Black-Box Approach

4.1.1 Identifying Actors
From the above problem statement we find two
actors:

chairman

participant

4.1.2 Identifying the use cases

Now for each actor, we find the relevant use
cases. This is done by looking at the problem
statement. So the following use cases are found
for the Video conference. ‘
For the chairman the use cases are:

conference setup

identify participants

connect particjpants to the conference

dlscpn_necp participants

terminate the video conference

ﬂobr grant

WA ARG EA] 105

control speaker s microphone

For the participant the use cases are:
floor request
transfer fax
transfer still picture

transfer text

4.1.3 Developing the use cases

Now we develop use case description for each of
the use case identified above. Due to lack of space
here, we will only show description for a couple of
use cases.

The description for each use case can be
developed by following the interactions and their
responses between the system and the actor during
that use case. For example, for the use case
conference set up we get the following des-
cription:

1. The conference chairman selects start con-
ference from the menu.

2. The system displays a dialog box.

3. The conference chairman enters name of the
conference and the list of the participants.

4. The conference chairman presses the cbnﬁrm
button to send the data.

5. The system displays invitation message to the

participant.

6. The participant chooses acceptance.

7. The system returns the response of the
participant.

8. The conference chairman presses the enter

button to start the conference.
Similarly the use case conference termination
would be described as:
1. The conference chairman presses the terminate
conference button.
2. The system displays a dialog box. ‘
3. The conference chairman presses the confirm
button to send the data,
4. The system proceeds to terminate the con-
 ference. . ’
Also, we will describe two more use cases. First
- use case is requeét floor for the conference

participant. Its description is as follows:

1. The participant selects request floor.

2. The system sends requesf to the chairman along
with participant s information. .
3. The system displays message request being
processed to participant.

The gecond use case is grant floor. This use
case is used to choose the next speaker of the
conference from among those participants who
requested to speak.

1. The system displays the list of requests from
participants.

2. The chairman selects next speaker.

3. The

microphone

switches . on the
and displays the corresponding

message on the participant s and chairman s

terminals.

4.1.4 Identifying Object Classes from the use cases

Now we look at the use cuses and identify
objects and classes. For this we look at nouns in
the use cases and remove unlikely classes and
objects (like action nouns, attribute nouns, vague
nouns, etc.). Hence we get the terminal as the only
good class. The ‘blgSS "terminal” is recorded in
object dictionary. ‘

4.15 Identifying events from the use cases

Events are stimuli to which a system or user
must respond. Hence we now identify events from
the use cases. The events identified are shown in
figure 3. '

4.2 Applying the White-Box Approach

In this step we find objects from problem space.
Then we find interactions between the actors and
the objects. Finally, we. find interactions amongst
the objects themselves.

system speaker s

Start conference,
Start, Terminate Acceptance,
Confirm Terminate, Display Floor request
requests, Speaker selection
- | Video
C [nwitation message

s vs.ystan

Fig. 3 System with events (black-Box approach)

106 ARAHI=EAB) A 5 A A 1 5@BD

4.2.1 Find Objects from the problem/solution space
From the problem and solution space, we find the
following additional classes of objects, and added in
objects/classes dictionary:

call control, multipoint control

42.1 Find Interactions between Objects and Actors
Considering the system as a set of objects, we find
interactions between

system objects and the

external elements (actors). Figure 4 shows the
interactions between the system objects and the
actors. Note that each actor interacts with his/her
own terminal (so we distinguish between them as

terminal A and rerminal B).

Display dialog box,
participant's response.
speaker message

—

terminal A
—_—

Start
Name of conference,
chairman Nemes of paricipants, speaker
sclection, terminate conference,
confirm start, confinm terminate

Request floor,
acceptance

. ——
terminal B ——— ——»

Invitation message,
‘wait message, speaker
message

participant

Fig. 4 Interactions between actors and system objects.

423 Find Interactions among Objects

Now we find interactions among objects within
the system. Again for this purpose, we need to
consult the problem and the solution space. Here
for example, we can consider the ITU-T structure
for the description of services [16]. Hence, we can
represent the interactions among system objects
(found from the problem and the solution space) as

shown in figure 5. Please note that due to lack of

Conference

setup
Confercnce
stare
Conference Canference
invitatien open
m ultipoint control

Conference| Confereace
, Sewp ok I anal-un lo,el
Conference opon

— e
term inal B Conference
€T TS e

Tetip ok

cali control B

Fig. 5 Interactions among system objects

space here, we are showing only a subset of such
functionality (the conference set up). Other func-
tionality can be shown similérly. Also note that
similar to terminal A and B, there are two call
control objects A and B.

4.3 Apply the Above Steps Recursively

Here we repeat the above steps in sequence.
First, we consider each object as a black-box and
look at its interactions with other objects. Then, we
decompose that object into further sub-objects. The
guide to decompositon is the complexity of the
interactions to the object. For example, in our case
the terminal and multipoint control objects can be
decomposed further using SOOA.

Let's consider the terminal. Actor of the terminal
is "call control.” Use cases of this actor are
relatively simple compared with the use cases of
the higher level, and can be found easily from the
higher-level interaction diagrams as follows :

Conference setup

Conference start

Conference open

Conference Invitation

Setup OK ™

From the abové use cases, identified objects are

menu, buttons, audio, video, recorder and fax. Muen
is an object to start conference, to accept parti-
cipation, and to record the contents of conference,
The "audio” and.”video” objects are to speak/listen
the discussion issues and to see the participants or
related materials. The objects, "recorder” and "fax”
are straightforward. These objects are added in
objects/class dictionary. Identified events are repre-

selected mene,
request audio/video channel
send voice/ image/ fax

terminal call control

ok!;vaitlrejem responce

teceive voice/ image/ fax . &

—

Fig. 6 Identified events from "terminal” use cases -

SAE ARAY EA471H 107

sented in figure 6, and interactions among objects

are in figure 7.

initizte/ .

< > audo
K/ end arvice
initize/ recpest. sevioe
press buton < P video
> OK/ end service
buttors e
— ready/ requst to wiite
< > recorder
acoepe buten
OKready “erd write
ready/ request o transmit
< > fax

Ol ready? end ransmit
Fig. 7 Interaction among subsystem objects

Through these recursive refinement, we analysis
and design the entire system. Additionally, during
these steps, it is possible to check the completeness
and consistency of our diagrams using objects/
classes dictionary, cross reference inspection bet-
ween diagrams of each level.

We explain -the application of our SOOA app-
roach to the system of a general video confereﬁce.
This example is adequate to explain our approach.
In case of a more complex system, the handling of
complexity is achieved by stepwise decomposmg of
the system to simple subsystems.

Thus we have demonstrated the ease of use of
our approach with an application. This is because
our approach does not assume prior knowledge
about the application domain. On the contrary
current popular Object-Oriented approaches have
limitations in their application to complex systems
because they assume such prior knowledge.

For example, the OOADA [4] technique, by
Booch, has trouble dealing with the development of
larger projects. Although it supports two constructs
for this purpose: namely, the class category.and the
subsystem. The class category construct is for the
Partitioning of the logical model. It only represents
a name space and does not support the repre-

Sentation of normal associations between different
classes, among different categories. The subsystem

construct is for the partitioning of the physmal
model rather than the logical one.

Similarly OMT [3,7], by Rumbaugh, supports
complex objects called composites. It is an extended
form of aggregation and is viewed at a higher level
than its parts. Composites may have associations
between themselves representing associations bet-
ween classes belonging to these composites. Such
composites don’t have any semantics but are used
This
concept is different from ours in that we use

to organize the understanding of the model.

complex objects as black-box first and then as
white-box. to decompose the system objects. In
addition we also include the interactions between
the objecté in our model, which increases the ease
of understanding of the system.

5. A Comparison With Common OO
Approaches

In this section we present a comparison of our
approach” with some of the commonly used and
studied Object-Oriented development approaches.
We take the examples of OMT by Rumbaugh, and
OOSE by Ivar Jacobson.

OOSE

The concept of wse case was proposed by
Jacobson in his (‘OSE [1]. Since use cases are
very helpful in determining user requirements, the .
concept has gained widespread acceptance in the
Object-Oriented Jacobson
applies the use case concept throughout the Object-
Oriented life cycle, for example to develop the

community. However,

analysis model from the requirements model and
then the design model from the analysis model and
so on. In the testing stage also use cases are used
to test the system thus producéd.

To handle large projev_:té, OOSE recommends the
use of ’subsystem’ concept. This concept is used
for grouping objects within the system. However,
the object types are different in OOSE from the
object types in our approach. Among the many
criteria for placing objects in subsystems, OOSE
recommends using functional - coupling. Objects
within a subsystem shoull have strong functional
coupling among them than other objects. .

OOSE recommends

looking at an object’s

108 ARANH=EAB) A 5 A A 158D

environment to find out if it is strongly functionally
related to another object. This includes looking at
the effect of
change in an object on the other objects, and the
operations they perform on one another.

different from the OOSE
approach in many respects. First, we have a black
box and white concept. Secondly, we dont have the
same types of objects as used by OOSE. As a
result the complex objects in our approach have

it’s communications with actors,

Our approach is

different interactions among themselves as well as

internally to the ones found in an OOSE
applicétion.

OMT

Rumbaugh developed -the OMT [2] method as a

way to organize software as a collection of discrete
objects which also incorporates both data structure
and behavior. in OMT is the
identification and organization of application domain
objects.

The OMT supports an iterative process of
development. Objects, and associations are added
and clarified in iterations. The process consists of
three stages: the development of :

» an object model

The essence

» a dynamic model
» a functional model)

These three models represent the three views of
a system: information, behavior, and function.
These are developed and refined in the analysis,
design, and the implementation stages.

Rumbaugh later evolved the OMT to add more
features and representations. The more important
extensions included the use case concept and their
relation to scenario development in the dynamic
model. The iterative process of OMT was also
modified and Rumbaugh suggested using a use
case driven iterative approach in the development
of the three models. .

The OMT in its latest version includes repre-
sentation for complex objects, known as 'composite
objects’. The composite object is an extended form
of aggregation.” The composite is viewed at a
higher level of abstraction than its parts. A

composite may contain classes and associations.
Composites may have associations at the composite
level to represent associations between classes from
different composites.

Composites, however, do not have any semantics
involve but serve to organize the understanding of
the model. This concept is similar to our approach.
Our complex objects have somewhat similar con-
cept. However, we use complex objects as black-
box first and then as white-box to decompose the
system objects. Qur approach also includes the

interactions between objects. We also provide

guidelines for decomposing complex objects.

6. Conclusion

Most of the currently available Object-Oriented
Analysis and Design methods assume detailed prior
knowledge about system before starting the
analysis phase. This knowledge is then used to
find objects and their interactions and associations
in the system. While this approach may work in
simple systems, it is very difficult to apply in the
analysis and design of large systems. This is also
the case in systems being developed for the newly
emerging technologies like information and commu-
nication.

This paper presented an approach that can be
successfully applied in such systems. It combines
two powerful concepts of use case and black-box.
The use case concepts helps in identifying objects
and their interactions as well as associations. This
has been used in several other methods also
discussed earlier. However the treatment of use
case concept here is different from its main
proposer, Ivar Jacobson in OOSE [1]1.We did not
classify objects as done by Jacobson and all objects
are equally treated. .

The other important concept we apply in SOOA
approach is the black-box concept. The application
of this concept sﬁnpﬁﬁes the complexity of the
system and provides a very powerful structuring
mechanism for the analysis and design of complex
systems. Thisis somewhat similar to the concept
of ensembles in the Fusion method [10] and func-

A ARG E4714E

tional decomposition as used in the Object-Oriented
Analysis and Design method by Martin and Odell [
9]. However, we have focused on the recursive

application of black-box and white-box concepts at’

different layers of the system resulting in a
stepwise analysis of the system under consi-
deration.

The recursion is applied at each level. At the top
the considered as a
black-box and its interactions are identified with
the users of the system. Then the system is
considered as a white-box and it is decomposed

most level, system is

into a set of objects into the next lower level.
Then each of those objects is considered as a
black-box and the interactions and associations
between those objects are identified. For this the
domain knowledge can be used in addition to the
use cases already developed in the first step. This
recursion (or stepwise réfinement) continues until
the desired level of simplicity in objects is reached.
The SOOA approach was applied to an example
system (a video conference). The application of the
SOOA approach demonstrated the practicality and
usefulness of the ‘approach for complex systems
where no prior knowledge about objects exists.
Although, the SOOA is not a complete methodology
-- it covers the analysis part of the Object-
Oriented development process it provides a useful
approach towards solving a major problem in the
application of Object—-Oriented development metho—
dologies to complex systems such as distributed
systems and telecommunications. Without a good
analysis stage, the design and its ensuing imple-
mentation stages cannot guarantee success of a
system development effort.

References

[1] Jacobson, I, Christerson, M., Jonsson, P., Over-
gaard, G., Object-Oriented Software Engineering,
Addison Wesley, 1992.

{21 Tom De;narco, Structured Anglysis and System
Specification, Yourdon Press, 1979.

- [3] Rumbaugh, J,, Blaha, M., Premerlani, W., Eddy, F.,

Lorenson, W., Object-Oriented Modeling and

[4]

[5]

[7]

(8]

(9l

[10]

[11]

[12]

{13]
[14]
[15]
{16]

[17]

109

Design, Prentice-Hall, Englewood Cliffs, New
Jersey, 1991.

Booch, G., Object-Oriented Analysis and Design
with Applications, The Benjamin/Cummings Pub-
lishing Company Inc., Redwood City, California,
1994.

Shlaer, S., Mellor, S.J., Object-Oriented Systems
Analysis: Modeling the World in Data, Yourdon
Press, Englewood Cliffs, New Jersey, 1938.

Shlaer, S., Mellor, S.J., Object Lifecycles: Modeling
the World in States, Prentice-Hall, Englewood
Cliffs, New Jersey. 1992

Rumbaugh, J., OMT: The development process, In
Journal of Object-Oriented Programming, Vol. §,
No. 2, May 1995, pp. 8-16.

Booch, G., and Rumbaugh, J., Unified Method for
Object-Oriented Development, Documentation Set,
Version 0.8, Rational Software Corporation, 1995.
Martin, J., Principles of Object-Oriented Analysis
and Design, Prentice-Hall, Englewood Cliffs, New
Jersey, 1993.

Coleman, D. Arnold, P., Bodoff, S., Dollin, C,
Gilchrist, H., Hayes, F., Jeremaes, P., Object-
Oriented Development: The Fusion Method,
Prentice-Hall, Englewood Cliffs, New Jersey, 1994.
ITU-T, "Q.71: ISDN 64 kbit/s Circuit Switched
Bearer Services”, 1988,

Henderson-Sellers, B., Edwards, .M., BOOKTWO
of Object-Oriented Knowledge: The Working
Object, Prentice-Hall, Sydney, 1994.

Myers, G., The Art of Software Testing, Wiley,
1979. '

ITU-T, "1150: B-ISDN functional features”,
Geneva, 1990. _

ITU-T, "F.732: Broadband Videoconference

Services”, Geneva, 1989.

James, C. and Armstrong, Jr., "six GUI builders
face off", SunWorld, December1992. .
Lee; J.S, Lee, S.B, and Chi, DH., "A Modeling
Tool for X-Window Application Software
Development”, ETRI Journal, Vol 15, No. 2, October
1993, pp. 75-84. " '

110 ARAFHE=EZB) A 5 A A 1 Z@®BD

& A

1979 Hgusta &8 SHEAD.
1983 Sagamon State University Com-—
puter Science Z<(4A}). 1983 North-
western University Computer Science
294 b, 1983~1985 Wayne State
: College ZA{Y7AL. 1985~1987 Noth-
western University A7AL 1988~1993 Bell Commu-
nication Research AYATAMTS). 1993~8A Fdh
Sn ATERtE By fARoleE AZEJC I,

CALS, AXAE 2dyg ¢ 47

QA &

1978d Folustm ARAASE E
1982'd Fojista olFTietd AAALL
stah(AAD dlojehlolx AF. 19874
Axze J1EAHAAAR) 23 &
Boh A 19918 FANER o] T
4 ARANEHREAD. 2ZELFT
219783 ~ A B2 AATA d7x TFF AFH

3

AT S/W FEHATAY. BYRoke Z2EZ 3F, F
FE EA, BAAAE, AZE], FElo|dE-MHIIE,
b v -

ol a4

1988 Zguigta ANEATH EU(°]
EAD. 1996 AAAY7 2H$E 71EAt
1988~8A F=ZHRATAETL HFEH
A7T aZEeo] FF AT HYD
74, BARLE BAAEH, SZEY
o ¥, HFH B 5.

s F

1995 Fguigin A EY(C1#AD
| 1997 Fduigtn digd AT 24
(el8+4AY). 1997~&A FastATa
ATY. BBk AAAY 2dY, £
2 AFH, Heluro] A2

] |
19808 Aguistm 2AFET AL
1987d Slz2A-RavIE AvE A
AL 19029 E2elok vish WAk} AL
19929 ~ 1994 F2eit e @are
| 3 zm4 19059 ~ 10069 BERE
i\ 129 9n 9 suTES 2E4 1906
~ x gEBEY AAEY Eak

e

EEE

| 1906 Zguian ARHAAS YO
SAb. 1996~8A FdHstm AR

o AT ATE BARoKE 2F

| Eslol B, 2AAAE

Mirza Misbah

1997 UMIST, UK in Computer
Science(8Ah. 1990 UMIST, UK in
Computer Science(9FA}b). 1995~1996
KOSEF post doctoral research
fellowship at Chungnam National
X University. 1996~3 =314 in the
faculty of Computer Science at the GIK Institute of
Engineering Science .gnd Technology, Topi, Pakistan

	page-0020.tif
	page-0021.tif
	page-0022.tif
	page-0023.tif
	page-0024.tif
	page-0025.tif
	page-0026.tif
	page-0027.tif
	page-0028.tif
	page-0029.tif
	page-0030.tif
	page-0031.tif

