
ORIGINAL RESEARCH ARTICLE
published: 266 February 2013

doi: 10.3389/fnhum.2013.00049

Tool-use practice induces changes in intrinsic functional
connectivity of parietal areas
Kwangsun Yoo , William S. Sohn and Yong Jeong*

Laboratory for Cognitive Neuroscience and NeuroImaging, Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology,
Daejeon, South        Korea

Edited by:

Srikantan S. Nagarajan, University of
California, San Francisco, USA

Reviewed by:

Lutz Jäncke, University of Zurich,
Switzerland
Shanqing Cai, Boston University,
USA

*Correspondence:

Yong Jeong, Laboratory for
Cognitive Neuroscience and
NeuroImaging, Department of
Bio and Brain Engineering, Korea
Advanced Institute of Science
and Technology, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701,

e-mail: yong@kaist.ac.kr

Intrinsic functional connectivity from resting state functional magnetic resonance imaging
(rsfMRI) has increasingly received attention as a possible predictor of cognitive function
and performance. In this study, we investigated the influence of practicing skillful tool
manipulation on intrinsic functional connectivity in the resting brain. Acquisition of tool-use
skill has two aspects such as formation of motor representation for skillful manipulation
and acquisition of the tool concept. To dissociate these two processes, we chose
chopsticks-handling with the non-dominant hand. Because participants were already adept
at chopsticks-handling with their dominant hand, practice with the non-dominant hand
involved only acquiring the skill for tool manipulation with existing knowledge. Eight young
participants practiced chopsticks-handling with their non-dominant hand for 8 weeks.
They underwent functional magnetic resonance imaging (fMRI) sessions before and after
the practice. As a result, functional connectivity among tool-use-related regions of the
brain decreased after practice. We found decreased functional connectivity centered on
parietal areas, mainly the supramarginal gyrus (SMG) and superior parietal lobule (SPL)
and additionally between the primary sensorimotor area and cerebellum. These results
suggest that the parietal lobe and cerebellum purely mediate motor learning for skillful
tool-use. This decreased functional connectivity may represent increased efficiency of
functional network.
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INTRODUCTION
Humans develop and manipulate tools in everyday life. Current
knowledge on the neural substrates and functions of tool use
is mainly derived from patients with apraxia (Goldenberg and
Hagmann, 1998). Apraxia is a disorder of motor control char-
acterized by impairment in performing meaningful movement
without any impaired basic motor function. Beginning with
a study by Hugo Liepmann, numerous studies have shown
that there are several types of apraxia such as ideomotor and
ideational/conceptual apraxia (Liepmann, 1900, 1908). Studies of
apraxia patients have also shown diverse functional impairment
in manipulating a tool (Heilman, 2003; Jeong, 2009). Tool-use
is not a single cognitive domain and several types of tool-use
impairments occur (Goldenberg and Spatt, 2009). In particu-
lar, patients with a lesion in the parietal area have difficulties
manipulating tools and pantomiming tool-use execution rather
than loss of the conceptual aspects (semantic knowledge and
basic purpose) of a tool (Vingerhoets, 2008; Goldenberg, 2009),
whereas other patients lose the conceptual idea of tools (Johnson-
Frey, 2004). Goldenberg and Spatt (2009) showed that impaired
retrieval of functional knowledge is related to frontal lesions
including inferior frontal gyrus (IFG). In contrast, parietal lesions
including supramarginal gyrus (SMG) and superior parietal lob-
ule (SPL), affect actual use of a tool (Goldenberg and Spatt,
2009). Functional imaging studies in a healthy population also
support this finding (Martin et al., 1996). Brain regions that

support actual skillful tool manipulation (how to use a tool) and
regions that store conceptual aspects of a tool (what a tool is
for) are different. Previous studies have reported that the cere-
bellum, IFG, premotor area (PM), SPL, and inferior parietal
lobule (IPL), which is subdivided into the SMG and angular
gyrus (AG), have specific tool-use functions (Obayashi et al.,
2001; Järveläinen et al., 2004; Maravita and Iriki, 2004; Obayashi,
2004; Johnson-Frey et al., 2005; Holmes et al., 2007). Parietal
areas and PM support skillful tool-use, whereas the IFG stores
semantic knowledge for tool-use (Lewis, 2006). The cerebellum
contains an internal model for tool-use (Fogassi and Luppino,
2005; Vingerhoets, 2008; Ramayya et al., 2010).

After the first demonstration of synchronized low-frequency
fluctuations (∼0.08 Hz) in the resting brain with blood-
oxygenation level dependence (BOLD) functional magnetic reso-
nance imaging (fMRI), the “resting state network” and “intrinsic
functional connectivity” have received a lot of attention (Biswal
et al., 1995; Raichle et al., 2001; Deco et al., 2011; Raichle, 2011).
Previous resting state functional magnetic resonance imaging
(rsfMRI) studies have shown that anatomically segregated but
functionally related brain regions are integrated and are organiz-
ing networks (De Luca et al., 2006; Chen et al., 2008). Functional
MRI is an indirect measure of neuronal population activity
in the brain. This method has given results compatible with
EEG or MEG studies. More specifically, it has been shown that
resting state network via fMRI is highly related to EEG microstates
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(Britz et al., 2010). Network organization in the brain has
been demonstrated not only with fMRI, but also using struc-
tural MRI, DTI, EEG, or MEG (Stam, 2004; Hagmann et al.,
2008; Van de Ville et al., 2010). Even though several neuroimag-
ing methods deal different temporal and spatial resolution, and
mechanism, multiple studies using different methods have com-
monly reported that the brain network as a whole, has small-
worldness and functionally related regions are highly synchro-
nized (Stam, 2004). In addition, functional connection strength
of this synchronization would reflect cognitive or motor per-
formance (Hampson et al., 2006; Baldassarre et al., 2012), mat-
uration (Fair et al., 2008; Dosenbach et al., 2010), and recent
experience (Tambini et al., 2010). Resting functional connectivity
via fMRI might be more appropriate to study long-term changes
because fMRI brain network is relatively more stable compared
to the networks from other modalities such as EEG microstates
which shows rapid dynamics (Britz et al., 2010).

In addition to the use of resting functional connectivity for
representing current brain function, resting functional connec-
tivity has also been shown to have the plasticity. Neuroimaging
studies have demonstrated that motor learning induces not only
an alteration in brain structure or functional activation with
the task but also affects the intrinsic functional connectivity
of the resting brain (Büchel et al., 1999; Grigg and Grady,
2010; Voss et al., 2010; Ma et al., 2011; Taubert et al., 2011)
as well as structural connectivity (Scholz et al., 2009; Taubert
et al., 2010). In addition, with cumulated evidence, it is now
broadly believed that functional properties (activation or func-
tional connectivity) and structural properties (cortical thickness
or structural connectivity) can be an indirect representation
of each other (Ilg et al., 2008; Greicius et al., 2009; Honey
et al., 2009; Granert et al., 2011). Hence researchers have been
extensively using resting state fMRI to investigate resting func-
tional connectivity representing brain cognitive function and
brain structure.

Proficiency at manipulating a new tool is a type of motor
learning (Berti and Frassinetti, 2000; Ishibashi et al., 2002a,b;
Wolpert et al., 2011). Effect of motor learning on functional
connectivity has been extensively reported, however, no study
has investigated the effect of tool manipulating practice on
functional connectivity in the resting brain. In this study, we
chose chopsticks-handling with the non-dominant hand as the
tool-use task and demonstrated what and how the functional
connectivity changes in the resting brain reflect tool-use perfor-
mance improvement. Because participants were already adept at
chopsticks-handling with their dominant hand, non-dominant
hand practice would influence the actual motor skill without
affecting the concept of chopsticks. As we mentioned, tool-use
can be divided into two sub-domains, conceptual aspect and
actual motor skill. In this study, we focused on acquiring motor
skill without influencing the conceptual aspect. By doing this,
we could extend our knowledge on motor skill aspects of tool-
use, and could better understand the changes of the resting brain
when acquiring new skill for tool manipulation. Thus, we hypoth-
esized that practicing chopsticks-handling with non-dominant
hand would mainly alter the intrinsic functional connectivity of
parietal areas.

MATERIALS AND METHODS
PARTICIPANTS
Eight healthy young adults [two females; age of 16.5 (SD : ± 0.53)
years, ranging from 16 to 17 years] volunteered for this study.
Every participant was right-handed according to the Edinburgh
Handedness Questionnaire Inventory (Oldfield, 1971). We set a
score of +40 as a criterion for right-handedness and scores of
every subject were over +40. Subjects are ordinary high school
students extraneous to any kind of sports, musical skill, or any
other hand skills. They also had no history of neurological or psy-
chiatric disorders. The participants and their caregivers gave writ-
ten informed consent to participate in this study. This study was
approved by the Institutional Review Board of Korea Advanced
Institute of Science and Technology (KAIST).

EXPERIMENTAL PROCEDURE
Participants practiced handling chopsticks with their non-
dominant hand (left hand) for 8 weeks using a chopsticks aid
(Figure 1). Specifically, they practiced moving beans sized <1 cm
in diameter from one dish to another using the aid at least 30 min
everyday; they also used real chopsticks with their non-dominant
hand at every meal (three times per day) during the practice
period. Initial performance of chopsticks-handling was measured
before starting the practice runs, and the final performance was
measured after finishing practice of 8 weeks. Chopstick handling
performance was quantified by counting the number of beans
moved from one dish to another in 1 minute.

The participants underwent MRI scanning before and after
practice, at weeks 0 and 8, respectively. We acquired structural T1
and fMRI data. The fMRI scanning included two sessions, first in
a resting state and the latter in performing task. During the resting
state session, subjects were asked to stay calm without thinking
about anything for 330 s, whereas during the task session, sub-
jects were asked to perform the chopstick-handling action using
their left hand for 30 s following a 30 s resting interval, repeated
five times for 300 s. Subjects were instructed to keep their eyes
open with watching a fixed white cross on the center of black
screen during the resting session. For the chopsticks-handling
task, subjects were holding a MR-compatible chopsticks aid made
of plastic (Figure 1) with their left hand. They performed simple
picking and releasing action with this aid, repeatedly.

FIGURE 1 | A chopsticks-aid used for practice and during MRI

scanning. Figure shows a chopsticks-aid for left-handedness, consisting of
a plastic body part and two rubber rings to place the index and middle
finger. The two sticks are connected, unlike normal chopsticks.
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MRI ACQUISITION AND PRE-PROCESSING
Structural and functional MRI data were obtained using a 3T
MRI scanner (ISOL Technology, Seoul, Korea) at the KAIST
fMRI Center. An anatomical T1-weighted MRI was acquired
for each subject [repetition time (TR) = 2800 ms, echo time
(TE) = 14 ms, flip angle = 60◦, field of view (FOV) = 220 ×
220 mm2, matrix size = 256 × 256, slice thickness = 4 mm, 35
axial slices]. Functional T2∗-weighted images were also acquired
using a gradient echo planar sequence sensitive BOLD signal
(TR = 3000 ms, TE = 35 ms, flip angle = 80◦, FOV = 220 ×
220 mm2, matrix size = 64 × 64, slice thickness = 4 mm, 35
axial slices). Functional MRI pre-processing (slice-timing correc-
tion, realignment, co-registration, normalization, and smooth-
ing) was performed using Statistical Parametric Mapping (SPM)
8.0 in MATLAB R2011a (7.12) (Natick, MA, USA). The first two
fMRI volumes were discarded for signal stabilization before pre-
processing. A slice timing correction was performed for the fMRI
time series, and spatial realignment was applied to these images.
Then, the corrected and realigned fMRI time series images were
co-registered with T1 MRI. T1 data were used as a normaliza-
tion source image to register the fMRI images into the Montreal
Neurological Institute space (MNI-152 stereotactic template).
Transformation matrices from individual T1 to the MNI-152 T1
stereotactic template were calculated, and these matrices were
applied to each co-registered fMRI image. Finally, normalized
fMRI images were smoothed using an isotropic Gaussian kernel
of 6 mm full-width at half maximum to increase the signal to
noise ratio.

INDEPENDENT COMPONENT ANALYSIS (ICA) AND SECOND LEVEL
COMPARISON: RESTING STATE fMRI
Group ICA was performed on week 0 and 8 rsfMRI data sepa-
rately using the Group ICA of fMRI Toolbox (GIFT v1.3i). We
extracted 20 group-independent components, only 1 of which
was selected as a component of interest (sensory motor network),
based on its spatial distribution in the brain, covering the primary
sensory area (S1), primary motor area (M1), and the supplemen-
tary motor area (SMA) (Beckmann et al., 2005; De Luca et al.,
2006). Individual resting state sensory motor network (rsSMN)
components extracted from group ICA were first converted into
z-score maps. Then, we used these pairs of rsSMN z-score maps
as an input for the two-sample paired t-test (week 0 vs. week 8,
p < 0.001, size > 8 voxels). As a control of task-selectivity in
resting state networks, we compared the default mode networks
(DMN) of weeks 0 and 8 to determine whether motor prac-
tice affected other networks. We selected one component which
centers on the precuneus and posterior cingulate cortex, and
additionally covers medial prefrontal cortex and lateral parietal
areas, as DMN (Raichle et al., 2001). Then, the same procedure
was applied to DMN for the second level comparison.

TASK fMRI FOR SELECTING REGIONS OF INTEREST (ROIs)
For this, we analyzed task fMRI data of week 0 and week 8 alto-
gether collectively. The task fMRI data were analyzed using FMRI
Expert Analysis Tool (FEAT) version 5.98, which is a part of the
FMRIB Software Library (FSL). We performed GLM analysis for
every individual data of week 0 and 8. Then we did group analysis

to find common activation areas by chopsticks-handling task both
before and after practice; 8 subjects × 2 times, total 16 data set.
Z statistic images were thresholded using clusters determined by
Z values > 4.0 and a (corrected) cluster significance threshold
of P = 0.05 (Worsley, 2001). By doing this, we could make one
group-averaged task activation map for chopsticks-handling. We
selected tool-use-related brain regions based on our task activa-
tion results and rsSMN, and then drew 5 × 5× 5 cubic regions of
interest (ROIs) in these regions manually. Additionally, we com-
pared the patterns of task activation during chopsticks-handling
before and after practice of 8 weeks with the same threshold
as above.

ANALYSIS FOR THE INTRINSIC FUNCTIONAL CONNECTIVITY WITHIN
TOOL-USE-RELATED AREAS
We first extracted the average time series from each ROI deter-
mined previously. A pair (weeks 0 and 8) of time-series was
obtained for each subject. A functional connectivity analysis was
performed for every pair of the time-series using Pearson’s corre-
lation within each set individually. As a result, 16 (8 subjects ×
2 time points) matrices of correlation coefficients were acquired.
Then we transformed the correlation coefficient “r” into “z”
scores by applying Fisher’s r to z transformation. We performed
a paired t-test group comparison of the time-series correlation
using these “z” score matrices. P-values < 0.05 (uncorrected)
were considered significant.

RESULTS
PERFORMANCE IMPROVEMENT
We performed two-sample paired t-test to test subjects’ perfor-
mance improvement. Every participant showed improvements in
chopsticks-handling performance with their non-dominant left
hand following practice. This improvement was statistically sig-
nificant on the group level (p < 0.0001). Before practice, they
moved 4.9 (SD: ± 4.7) beans per minute, whereas they moved
11.8 (SD: ± 5.8) beans per minute after practice, thus showing
an increase of 7.1 (SD: ± 2.2) beans per minute).

DECREASED CONNECTIVITY WITHIN rsSMN
Group-averaged rsSMNs of weeks 0 and 8 are shown in
Figures 2A and B, respectively. In both states, group-averaged
rsSMNs commonly included the bilateral S1 and M1. These
networks also extended anteriorly to the PM and the SMA and
posteriorly to the SPL and SMG. However, the intra-connectivity
of the rsSMN at week 8 decreased significantly compared to
that at week 0 (p < 0.001, size > 8 voxels, Figure 2C). We found
decreased M1 and PM connectivity in the left hemisphere and
decreased SMA, S1, and M1 connectivity in the right hemi-
sphere at week 8. However, we could not find any significant
change in group-averaged DMNs between weeks 0 and 8 (no
significance under p < 0.001, size > 8 voxels). Figure 3 shows
the group-average DMNs of week 0 and week 8.

SELECTED MOTOR-RELATED ROIs AND TASK fMRI ACTIVATION
We defined 15 cubic ROIs composed of 5 × 5× 5 voxels based
on the task fMRI and rsfMRI results (Figures 4 and 5). We
made one ROI for medial SMA and other 7 ROIs in each

Frontiers in Human Neuroscience www.frontiersin.org February 2013 | Volume 7 | Article 49 | 3

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Yoo et al. Tool-use changes parietal connectivity

FIGURE 2 | Group-averaged rsSMNs at week 0 and 8. Group-averaged
rsSMNs were acquired at (A) week 0 and (B) week 8. Both networks
included bilateral primary sensory motor areas and the supplementary motor
area. (C) Intra-rsSMN connectivity decreased following 8 weeks of practice

(p < 0.001, size > 8 voxels). The regions affected were the supplementary
motor area, the primary sensory area, and the primary motor area in the right
hemisphere and the primary motor area and premotor area in the left
hemisphere (Neurological view).

hemisphere. These 7 ROIs were in the IFG, PM, primary sen-
sory motor areas (SM1), SMG, SPL, cerebellar lobule IV, and
cerebellar lobule VI. These bilateral ROIs were symmetrically
placed.

We could not find any significant difference in task-induced
activation between week 0 and week 8 (p < 0.05, corrected).
Figure 5 shows common brain activation during chopsticks-
handling with a left hand in week 0 and 8 (p < 0.05, corrected).

INTRINSIC FUNCTIONAL CONNECTIVITY CHANGES WITHIN
TOOL-USE-RELATED AREAS
We found decreases in intrinsic functional connectivity, whereas
no significant increase in functional connectivity was observed

after practice (Figure 6). Overall, changes were observed mainly
in the right hemisphere. The connectivity between the right SMG
and right PM and SM1 decreased, and connectivity between the
SPL and SM1 in the right hemisphere also decreased.

The decreased functional connectivity was mainly centered on
the parietal area. Specifically, the bilateral SMG had decreased
connectivity with the right PM (p < 0.01). The left SMG had
decreased connectivity with bilateral cerebellar lobule IV (left and
right, p < 0.05 and p < 0.005, respectively), whereas the right
SMG had decreased connectivity with bilateral SM1 (left and
right, p < 0.05 and p < 0.01, respectively). The SPL, another
parietal area, also showed decreased connectivity with several
brain regions; the left SPL had decreased connectivity with the
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FIGURE 3 | Group-averaged DMNs at week 0 and 8. Group-averaged DMNs were acquired at (A) week 0 and (B) week 8. DMNs centered on the precuneus
and posterior cingulate cortex, and additionally covered medial frontal areas and lateral parietal areas.

FIGURE 4 | The 15 selected tool-use-related ROIs. Fifteen cubic ROIs
composed of 5 × 5 × 5 voxels were determined. Bilateral IFG, SMG, SPL,
PM, SM1, Cbll VI, and Cbll IV, and SMA were picked for ROIs. Only ROIs in
the right hemisphere are shown for the bilateral ROIs. The left hemispheric

ROIs are in symmetrical locations. (IFG, inferior frontal gyrus; SMG,
supramarginal gyrus; SPL, superior parietal lobule; PM, premotor area; SM1,
primary sensorimotor area; Cbll VI, cerebellar lobule VI; Cbll IV, cerebellar
lobule IV; SMA, supplementary motor area).
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FIGURE 5 | The brain areas activated during chopsticks-handling. Figure
shows the brain activation induced by chopsticks-handling with a left hand.
Activated area includes SM1, PM, SPL, SMG, SMA, IFG, Cbll VI, and Cbll IV.

(IFG, inferior frontal gyrus; SMG, supramarginal gyrus; SPL, superior parietal
lobule; PM, premotor area; SM1, primary sensorimotor area; Cbll VI, cerebellar
lobule VI; Cbll IV, cerebellar lobule IV; SMA, supplementary motor area).

FIGURE 6 | Changes in intrinsic functional connectivity within the 15

tool-use-related areas. Pairwise connectivity change following 8 weeks of
chopsticks-handling practice is illustrated. Of the 15 regions, parietal areas,
particularly the bilateral SMG and SPL, were related to most of the
connectivity changes. One connectivity change beyond the parietal lobe
was between the left Cbll VI and the right SM1. All significant changes were
decreases. (IFG, inferior frontal gyrus; PM, premotor area; SMA,
supplementary motor area; SM1, primary sensorimotor area; SMG,
supramarginal gyrus; SPL, superior parietal lobule; Cbll IV, cerebellar lobule
IV; Cbll VI, cerebellar lobule VI).

left cerebellar lobules IV and VI (p < 0.05), whereas the right
SPL had decreased connectivity with the right SM1 (p < 0.05).
We also found an additional change in connectivity between the
right SM1 and the left cerebellar lobule VI, which is beyond the

parietal area (p < 0.05). However, we did not find any significant
changes in functional connectivity in the IFG.

DISCUSSION
We investigated the effect of practicing skillful tool manipulation,
excluding acquisition of the conceptual or semantic knowledge,
on intrinsic functional connectivity. We demonstrated that 8
weeks of tool-use practice induced significant decreases in rsSMN
connectivity and other intrinsic functional connectivity among
brain regions, particularly in parietal areas. Our results support
the hypothesis that parietal areas play a role in skillful tool-use
manipulation and that this feature is reflected even in a resting
state.

Previous studies have showed that intrinsic functional connec-
tivity decreases after long-term practice (Ma et al., 2010, 2011;
Voss et al., 2010; Taubert et al., 2011). In these studies, the func-
tional connectivity of the resting brain among task-related regions
increases in the early phase of motor learning then decreases in
the late phase. These results might suggest and provide evidence
for non-linear change of functional connectivity with long-term
practice. In addition to functional connectivity, fMRI activation
studies also have reported similar patterns, increased in early
phase and decreased activation in the late stage of practice (Xiong
et al., 2009). This is consistent with the finding of less activation
in experts compared to beginners (Bezzola et al., 2012). Previous
studies described practice of about 4 weeks as long-term thus 8
weeks practice in our study was assumed as long-term practice.
With these previous finding and knowledge, our results provide
evidence for that reduced neural cost and enhanced efficiency in
the brain’s functional network in controlling a cognitive or motor
function.

Other studies have reported that resting functional con-
nectivity properties has a significant relationship with task-
induced BOLD activity (Mennes et al., 2010, 2011), and that
practice induces a decrease in brain activation (Sayala et al.,
2006; Reithler et al., 2010). These studies showed that rest-
ing state functional connectivity is positively correlated with
task-induced brain activation and that long-term practice
induces improvement in behavioral performance and decrease
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in functional activation. These results from literatures coin-
cide indirectly with our results, improvement in chopsticks-
handling and decrease in related functional connectivity. In
our study, however, we could not see the difference in task-
activation pattern between week 0 and 8. This is might be
because the task subjects performed in the scanner was too
simple. Even though subjects were using chopsticks aid to
mimic picking and releasing of chopsticks-handling motion,
the task in the scanner was more similar to simple finger-
tapping. This task would hardly represent the actual skill of
chopsticks-handling. Hence our task-activation result might not
reflect chopsticks-handling skill well. Other studies have reported
that functional connectivity of the resting-state brain or ampli-
tude of resting functional connectivity may explain variability
in subject behaviors (Cole et al., 2012; Zou et al., 2012). It
has been also reported that functional connectivity via fMRI
can predict maturity of individual brain (Fair et al., 2008;
Dosenbach et al., 2010). One study reported a positive asso-
ciation between global efficiency of the functional brain net-
work and intellectual performance (Van den Heuvel et al.,
2009). Thus, with the result of improved performance, we sug-
gest that this decreased intrinsic functional connectivity within
tool-use-related areas might indicate a change in the network’s
efficiency for a specific function, becoming more efficient for
motor functioning as a subject becomes more proficient at
tool-use.

We identified functional connectivity changes in several brain
regions, and found that the functional connectivity alterations
were centered in the parietal lobe. This result provides evidence
for plastic change in parietal areas as the key feature during tool-
use practice. The SMG, an anterior part of the IPL, is involved
in various aspects of motor function. Actual tool-use execution
(Higuchi et al., 2007), imagination, and pantomiming of tool
execution (Imazu et al., 2007), and, more specifically, chopsticks-
handling (Imazu et al., 2007; Tsuda et al., 2009) actually induce
activation of the SMG. As a result of chopsticks-handling practice,
intrinsic functional connectivity in the bilateral SMG decreased
significantly. The change in the right SMG occurred because
participants used their left hand during tool manipulation prac-
tice. In contrast, the change in the left SMG supports the motor
function dominance of the left hemisphere. Left hemisphere
motor function dominance and tool-use is now well-understood.
Johnson-Frey et al. (2005) showed a distributed left hemisphere
network for tool-use. This network contains the SMG and AG
as well as the PM. Other studies have reported that the SMG
is involved in motor execution, mental simulation (Grezes and
Decety, 2001), and motor attention (SMG in the left hemi-
sphere) (Rushworth et al., 2001). In addition to the SMG, we
found a significant decrease in functional connectivity in the
SPL with other brain areas. The SPL is also involved in tool-
use (Choi et al., 2001; Inoue et al., 2001). The SPL also plays
a role in maintaining internal representations (Wolpert et al.,
1998), contralateral coding of imagined body parts (Wolbers
et al., 2003), hand grasping (Simon et al., 2002), and observa-
tion of actions for acquired motor skill (Calvo-Merino et al.,
2005).

To determine whether the change in functional connectivity
was task-selective, we investigated functional connectivity within
the DMN and of the IFG. The IFG is thought to store concep-
tual aspects of a tool (Johnson-Frey, 2004). However, we found
no changes in connectivity involving the IFG. Participants in this
study had already learned to use chopsticks; thus, they would
not gain any knowledge of the conceptual aspects with practice.
Hence, our results are consistent with previous knowledge about
the role of the IFG in tool-use and the storage of semantic knowl-
edge, and with our initial hypothesis. In addition, we did not find
any changes in DMN connectivity following chopsticks-handling
practice. The DMN is shown to be deactivated during a task and
not to be correlated with motor function (Raichle et al., 2001;
Damoiseaux et al., 2006). Our result of maintained DMN with
practice accords with these previous reports. This supports that
resting state networks play a specific role in each cognitive func-
tion or that resting state networks have task-selectivity (Harrison
et al., 2008).

Our study has several limitations. First, the number of sub-
jects participating in this study was relatively small. Thus, we
did not find a correlation between functional connectivity and
improved performance. It might be possible to identify this cor-
relation with additional subjects. Second, the participants were
relatively young. Thus, their brains may have been more flexi-
ble than those of older adults. Several neuroimaging studies have
shown age-dependent differences in brain connectivity and plas-
ticity (Damoiseaux et al., 2008; Fair et al., 2008; Power et al.,
2010). However, no research has directly compared practice-
induced brain plasticity in the resting state connectivity in differ-
ent age groups. Third, we applied rather less stringent threshold
for the analysis of rsSMN than task fMRI analysis to show clear
result. This might increase the risk of type-I error. However, in
contrast with change in rsSMN, we could not find any change
in DMN with the same threshold. Thus, given these results,
we carefully suggested that there is a task-selectivity in resting
state networks.

In summary, we demonstrated a tool-use practice-induced
decrease in functional connectivity in the resting brain. These
changes showed network selectivity such that the sensory motor
network showed decreased connectivity, whereas connectivity of
the DMN remained constant. Our results indicate that pari-
etal regions play a role in skillful manipulation of a tool in the
tool-related fronto-parietal network, and that decreased intrinsic
functional connectivity represents enhanced neural efficiency for
performing a task.
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