A RELATIONAL QUERY LANGUAGE INTERFACE TO A
BIERARCHICAL DATABASE MANAGEMENT SYSTEM

Chin-Wan Chung

Kenneth E. McCloskey

Computer Science Department
General Motors Research Laboratories
Warren, Michigan 48090-9057

ABSTRACT

This paper p-esents an efficient Structured Query
Language (SQL) interface to an IMS hierarchical
database management system (DBMS). This interface
is a part of DATAPLEX, a heterogeneous distributed
database management system, which will provide
location-transparent access to diverse databases
using SQL in engineering and manufacturing
environment. The initial target DBMS’s to be
interfaced are IMS, DB2, and INGRES. Among the
three DBMS’s, IMS is the hardest to provide an S@QL
interface. An SQL interface to IMS, called
SQL/IMS, was developed. A method which translates
IMS data definitions to equivalent relational data
definitions is developed. A procedure which
decomposes an SQL query into a set of simple IMS
processable queries and recomposes partial results
is derived. SQL/IMS was tested using a small test
database and a large production database. The
performance of SQL/IMS is compared with that of
another system used to access IMS data.

1. INTRODUCTION

In a computer-aided engineering and manufacturing
environment, it is critical to supply necessary
data to various engineering and manufacturing
processes.

The data to these processes comes from diverse
sources. For example, a product assembly plant
generally utilizes different DBMS’s for the plant
controller and the area controller due to the
difference of application requirements. The
product scheduling database is in the plant
controller which typically uses IMS [7], whereas
the area controller uses a relational DBMS such as
INGRES to manage the product tracking database. In
this case, INGRES needs to get data on parts,
options, and inventory from IMS. In addition, the
plant controller’s IMS is connected to the outside
IMS managing the product order database which is in
turn connected to dealers.

As the database technology evolves, the migration
to a new database environment is required where
applicable. The bill-of-material and engineering
release system has been used for a while in the
manufacturing industry, and naturally it has been
developed using a non-relational DBMS. To rebuild
the system using a relational DBMS, both the new
and the old systems must coexist until the

CH2806-8/89/0000/0105/$01.00© 1989 IEEE

migration process is completed because of a vast
amount of applications developed on the old system.

Consequently, an interface among different DBMS’s
is essential. General Motors Research Laboratories
has initiated the DATAPLEX project to provide an
effective interface among diverse DBMS’s. DATAPLEX
is a heterogeneous distributed database management
system which will provide 2 common view of diverse
databases and a standard query language for
Corporate-wide data sharing. The architecture of
DATAPLEX is described in [2]. In this
architecture, a relational model is used to provide
a common view of data and SQL is selected as a
standard query language. A prototype DATAPLEX [3]
which interfaces an IMS hierarchical DBMS and an
INGRES relational DBMS showed the feasibility of
the DATAPLEX architecture.

An interface to IMS in DATAPLEX environment is
important because IMS has been the most heavily
used mainframe DBMS in large corporations. It is
estimated that about 90% of DBMS-resident data in
General Motors Corporation is stored under IMS. In
addition, the techniques to interface IMS can be
applied to interface other non-relational DBMS’s
such as network DBMS’s. IMS is based on a
hierarchical data model and uses DL/1 as a data
manipulation language. While SQL is a high-level
query language, DL/1 is a set of subroutine calls
that must be embedded in a host language such as
PL/1 or COBOL. Since DATAPLEX uses the relational
model and SQL, relational DBMS’s are relatively
easy to interface. On the other hand, an interface
to a non-relational DBMS poses a difficult
translation problem.

Due to the need for a rapid prototyping, the
prototype DATAPLEX used DXT [6] as an SQL to DL/1
translator. DXT is an IBM product which translates
a subset of SQL to DL/1. The experience of DXT in
the prototype DATAPLEX led to a conclusion that the
performance of DXT is not adequate and the subset
of SQL supported by DXT is too restrictive for a
production DATAPLEX. Therefore, we decided to
develop an SQL interface to IMS internally for a
full-function DATAPLEX. This interface is called
SQL/IMS.

The retrieval part of SQL/IMS has been completed
and a driver module was written to run the
implemented SQL/IMS as a standalone system under
MVS/XA or MVS/ESA. SQL/IMS can execute SQL queries
interactively from a TSO session or as a batch job.

Benchmarks were prepared to test various features
and the performance of SQL/IMS. The comparison of
performance of SQL/IMS and DXT is conducted using a
small test database and a large production
database.

In Section 2, the architecture of SQL/IMS is
presented along with basic design considerations.
The translation of IMS data definitions to
equivalent relational data definitions is discussed
in Section 3. Section 4 explains the translation
of an SQL query to a DL/1 program and the execution
of the program. Section 5 describes a testbed and
the result of benchmark executions.

2. ARCHITECTURE

The major issue in developing an SQL interface to
IMS is the incompatibility between SQL and DL/1.
SQL is a set (set of records) oriented language
suitable for manipulating relationally structured
data, whereas DL/1 is a record oriented language
for hierarchically structured data.

SQL has more features. than DL/1 and consequently
there is no DL/1 feature to which certain SQL
features can be translated. These SQL features
must be implemented without using DL/1 features.
However, some of SQL features are seldom used in
applications. In fact, most frequently used SQL
features are the ones corresponding to relational
operations Selection, Projection, and Natural-Join.
All these three operaticns can be translated to
DL/1 features, and especially Natural-Join can be
processed very efficiently using DL/1 because, in
many cases, the relationship between two entities
is implemented by pointers in IMS databases.

Based on the above facts, we have defined a subset
of SQL to be supported by SQL/IMS with the
following guiding principles:

* Include all SQL features that can be translated
to DL/1 features to make use of efficient IMS
capabilities.

* Include SQL features that are frequently used
in applications so that most of the applica-
tions can be covered by the defined SQL subset.

¢ FExclude SQL features that are seldom utilized
to avoid the implementation of a relational
DBMS and the run time overhead of a large

system.
This subset of SQL is defined in Section 4. An SQL
query which uses unsupported SQL features is
decomposed by DATAPLEX into two queries: Q1 (Query

1) contains supported SQL features, and §2 is the
remaining part of the original query. Then, Q1 is
sent to SQL/IMS which translates it to a DL/1
program and submits the program to IMS. @2 and the
result of Q1 are fed to a relational DBMS (which
may be at a remote-location). The result of Q2 is
the result of the original query.

Our approach to process an SQL query submitted to
SQL/IMS is to decompose the query into simpler
queries that can be processed by IMS and then
perform remaining relational operations on the

106

intermediate results retrieved from IMS to obtain
the final result. There are two ways to translate
a decomposed simple SQL query to a DL/1 program:
(1) to generate DL/1 code on the fly, and (2) to
generate parameter values from the SQL query and
feed them to a fixed parameterized DL/1 program.
We take the second approach for its simplicity and
efficiency. The architecture of SQL/IMS consists
of the following three modules:

Decomposer/Translator. This module reduces the
SQL query into a set of translated subqueries based
on the query predicates and the databases

referenced. It also generates the recomposition
queries required to construct a final result.

Recomposer. This module accepts as input the
decompose§ queries and recomposition queries.
Recomposer first passes each subquery to the DL/1
Engine for processing. When all subqueries are

complete, the recomposition queries are issued and
a final result is created.

DL/1 Engine. This module is a fixed
parameterized DL/1 program that accepts a subquery
and generates a series of DL/1 path calls to
retrieve the requested data. DL/1 Engine uses the
papping information attached to a subquery to
identify the target database paths and format DL/1
segment search arguments. DL/1 Engine performs
Selections on non-key attributes and Projections
for data retrieved from IMS.

The architecture of SQL/IMS is depicted in
Figure 1.

SQL/IMS
Decomposer/ Recomposer DL/1 Engine
Translator
Figure 1. Architecture of SQL/IMS

3. DATA DEFINITION TRANSLATION

3.1. Hierarchy to Relation Mapping

The translation of an IMS hierarchical data
definition to an equivalent relational data
definition is accomplished by mapping each IMS
segment type to a relation. In addition, the
relation corresponding to a segment type will
include the key attributes of each predecessor of
the segment type in the hierarchy (the concatenated
key, in IMS parlance). Relations defined on the
dependents of non-key segments would not include
any attributes from the non-key segments.

For example, consider the following IMS hierarchy,
shown in Figure 2, which represents a database for
vehicle manufacturing. Each segment type is
defined at the bottom of this page.

VEHICLE

ENGCHA COMP
DRAWING ASSEM
Figure 2. Sample IMS Database Definition

Using the previously described mapping strategy,
this sample IMS hierarchy produces the following
relations:

Although IMS primarily supports a hierarchical
structure, network style structures are possible
via IMS logical databases (a misnomer, really, as
there is nothing logical about these databases
which are actually physical links). Existing
physical IMS hierarchies are connected using
physical pointers to form new "logical"
hierarchies.

This additional structure could cause a mapping
problem as not all IMS structures would be
hierarchies. Fortunately, there is a simple
solution; mapping is always based on the Program
Specification Block (PSB). Since all IMS databases
described in a PSB present a consistent data
structure (a hierarchy), regardless of the
underlying physical data structure, this is the
most reasonable point from which to map.

The mapping information is stored in two files: the
Physical Definition Table (PDT) and the View
Definition Table (VDT). The PDT contains all the
IMS access information for each attribute. The VDT
contains a definition of the relation as seen by
the user. This provides three main features:
attributes names to be aliased, attribute type
coercion and relation subsets to be formed.

4. TRANSACTION TRANSLATION AND EXECUTION

In this section, the level of SQL to be supported
is defined. The query translation process is then
described followed by a discussion of query
execution.

In attempting to develop a relational interface to

Relation Attributes :
an older, non-relational system, relational
VEHICLE (VID, GROUP, MILEAGE, PRODVOL) operators would be implemented over the existing
ENCCHA (VID’ DATE ’DESIGNERJ DESCRIPTION) single record at a time system. The implementation
DRAWING (VID, DRAWINGH, CONTACT, CADSYS, STATUS) of a complete set of relational operators would
COMP (VID, COMP#, CATEGORY, PRODDATE) up icate a large portion o existing re ationa
ASSEM (VID, CUMP#’ PART¥ QﬁANTITY) DBMS’s. The optimal strategy is to implement the
’ H b
Segment Description Attributes Attribute Description
VERICLE One occurrence per model, it describes «VID Vehicle ID #
all the model specific data. GROUP Manufacturing Group
MILEAGE Estimated MPG
PRODVOL Production volume
ENGCHA One occurrence per engineering change, DATE Date of change
it describes a modification to the DESTIGNER Name of designer
vehicle design. DESCRIPTION Change description
DRAWING One occurrence per design drawing «DRAWINGH# Drawing ID #
affected by the engineering change, it CONTACT Contact person for drawing
provides the reference for the document. CADSYS CAD system where stored
STATUS Current revision status
COMP One occurrence per vehicle component, it «COMP# Component ID #
describes a major vehicle component. CATEGORY Type of component
PRODDATE Production date
ASSEM One occurrence per subcomponent, each «PART# Part ID #
describes a portion of a component. QUANTITY Quantity used

Attributes that are defined as keys to IMS are preceded by an ’x’.

107

basic relational operators that provide the most
useful features of the language. Our SQL subset
for retrieval is defined as follows:

SELECT target attributes, set functions,
expressions

FROM relations

WHERE predicates

ORDER BY sort attributes

In the SELECT list, set functions may contain
expressions, and vice versa. Predicates are
connected using logical AND and OR operators and
grouped using parentheses. A predicate can be an
equi-join term or a selection term with comparison
operators =, >, <, >=, <=, <> which may contain
expressions. Nested queries are not supported,
however, a nested query can be transformed to an
equivalent non-nested query [9].

4.1. Query Decomposition/Translation

The process of query decomposition/translation
involves breaking the query down into units simple
enough to be executed by an IMS application program
and converting them to an acceptable format. For
the sake of brevity this process will be referred
to as translation. There are eight steps of
translation all queries must pass through prior to
execution. Each step either removes functions that
are not processable by IMS or splits the query into
subqueries that reference a smaller range of data.
For each act of translation imposed on a query, a
complementary recomposition query is generated to
be executed once the data has been retrieved from
IMS. The eight steps of translation are now
described.

Step 1. Syntax Check. The SQL query is scanned
to verily that the query is syntactically correct.
All attribute and relation references are tested
for existence in the VDT.

Step 2. Remove Nonsupported Operatiomns. Since
IMS is a simple record-oriented DBMS, any functions
provided in the SQL subset that perform set-
oriented operations must be removed. Expressionms,
set functions and the DISTINCT option (if speci-
fied) are removed from the target list. Sort
instructions (i.e., ORDER BY) are also removed at
this time. Each of the removed operations is saved
in a recomposition query that is executed after the
data is retrieved.

Step 3. Conversion to Disjunctive Normal Form.
The query is then transformed into a set of
conjunctive ('AND’ connected) subqueries. This is
a prerequisite for the Steps 6 and 7 of translation
where the query will be decomposed based on the
range of the query. A recomposition query will be
generated to union the results from each subquery.

Step 4. Remove Expressions from Predicates.
Each of these new conjunctive queries then have any
expressions removed from their respective search
conditions (i.e., WHERE clause). These expressions
are saved in a recomposition query that will be
executed once the data has been retrieved.

108

Step 5. Conversion to Graphical Representation.
Each conjunctive query is translated into a query
graph to perform the following two steps of
translation. Using the information stored in the
PDT, each relation is graphed as a node and the
search conditions are represented as arcs on the
nodes. All information on the attributes and
hierarchies is included in the graph.

Step 6. Decompose by Database. Each query graph
is then examined for the Jlocation of the data to be
retrieved. An IMS query (DL/1 call) may reference
only one database. Therefore queries that
reference data in multiple IMS databases are
decomposed into queries that reference data in a
single IMS database by cutting the connecting arcs
between the relations.

Step 7. Decompose by Path. The strength of the
hierarchical data structure used by IMS lies in its
physical storage technique. IMS (usually) stores
the occurrence of a root physically adjacent to its
dependents and connects them into the hierarchical
form using pointers. This structure allows very
fast access to dependent segments from the root
segment .

A by-product of this structure is an efficient way
to perform equijoins. A relation mapped from a
segment type will include the key fields of all its
predecessors (including the root). Therefore, an
SQL command that specifies an equijoin between
relations that map to different IMS segment types,
using the common root key field may be retrieved
using a special type of IMS operation known as a
path call. This is called a pathjoin.

A query referencing multiple segment types is
tested for the presence of a pathjoin. If there
are arcs which do not correspond to the pathjoin,
then the query is further decomposed by cutting the
connecting arcs between nodes.

Step 8. Final Graph. The query graph is now
regenerated based upon the results from the last
two steps of translation. All decomposed graphs
are generated into independent graphs with the
removed arcs sent to recomposition join queries.

At this point the subqueries are processable by the
IMS interface program.

4.2. Query Execution/Recomposition

After translation, the query is passed to the query
execution/recomposition module, the Recomposer. It
passes the individual subqueries to the IMS inter-
face program for execution. Once all the sub-
queries have executed the recomposition queries are
applied against the retrieved data in the reverse
order in which they were created during
translation.

The IMS interface module is called the DL/1 Engine
(DLE). The DLE is a standard IMS application
program that uses the normal application call
interface to retrieve IMS segments. The DLE search
module uses the information contained in the query
graph to format the DL/1 call and screen the

segments returned. For segments that meet the
query qualifications, the query target attributes
are formatted into the result row and returned to
the Recomposer.

Once 21l the subqueries have been executed the
results must be massaged into the final result
requested by the original query. This process is
called recomposition. Recomposition is comprised
mainly of performing all the functions that cannot
be processed within IMS. These operations are
performed in the reverse order of translation and
are as follows:

1)
2)
3)

Non-pathjoin equijoins.

WHERE clause expression.

Union of all subquery results, from each
conjunctive subquery.

DISTINCT.

Set Function evaluation.

SELECT list expression evaluation.
Sorting, i.e., ORDER BY.

5. TESTING

SQL/IMS is mostly in C with some assembler.

SQL/IMS is installed on an IBM 4381 S91E (Model 23)
which runs MVS/ESA. The IBM 4381 is a heavily
loaded departmental test machine. Two IMS
databases are used to test SQL/IMS. One is a small
test database used to test the prototype DATAPLEX
[3]. The other is a part of the production
Maintenance Management Information System (MMIS)
obtained from a plant automation development group.
SQL queries were formulated to test various
features of SQL and to retrieve diverse sizes of
results from different parts of the IMS databases.

Since the test database is small, it is used to
check the correctness of the results produced by
SQL/IMS. The data structure diagram and the number
of occurrences for each segment type of the test
database are shown in Figure 3. Fourteen SQL
queries were executed against the test database.
SQL/IMS produced correct results for all the test
queries. The equivalent relational data definition
of the test database and the fourteen SQL queries
can be found in Appendix A.

VEHICLE PART
(5) (35)
ENGCHA COMPONENT INVENTORY
(15) (13) (50)
ASSEMBLY
(35)
Figure 3. Structure of Small Test Database

(number of occurrences)

109

The performance of SQL/IMS against a small IMS
database is also tested using the test database.

In addition, it is compared with the performance of
DXT. DXT {6] is an IBM product which was used as
an SQL to DL/1 translator for the prototype
DATAPLEX. Table 1 shows the CPU time for SQL
queries. Due to the lack of functionality, DXT
couldn’t process some of the queries. The
corresponding entries are marked with ’x’.

TABLE 1

Comparison of Performance of SQL/IMS and DXT
Against a Small Test Database

CPU Time (in seconds)

Records

Request| SQL/IMS DXT in Result
1 0.414 3.576 2
2 0.335 3.502 2
3 0.512 3.877 49
4 0.418 3.770 7
5 1.358 3.804 2
6 0.582 * 1
7 0.585 * 1
8 0.574 * 1
9 0.461 * 1
10 0.896 * 5
11 0.902 * 5
12 0.878 3.608 16
13 0.343 3.626 13
14 0.338 3.628 13

+ indicates the query contains syntax
and/or features not supported by DXT.

The MMIS database is used to test the performance
of SQL/IMS against a large production IMS database.
The MMIS database contains maintenance scheduling
information for plant equipment. The data
structure diagram of the MMIS database is shown in
Figure 4 with the number of occurrences for each
segment type. The equivalent relational data
definition of the MMIS database is provided in
Appendix B.

Eight SQL queries are formulated to test the
performance for various types of access to IMS
databases. These queries are listed in Appendix B.
The comparison of the CPU time for SQL/IMS and DXT
is shown in Table 2. For the queries that are
successfully executed by both of the systems, the
two systems produced the same number of result
records for each request.

EINV

(60018)
!
EVOL ESPC EPPU ESOC ECRT | ETRK
(60018) (165231) (340) (60018) (0) | | (43763)
J
ESMP
(43305)
Figure 4. Structure of MMIS Database (number of occurrences)

TABLE 2

Comparison of Performance of SQL/IMS and DXT
Against a Large Production Database

CPU Time (in seconds)

Records

Request| SQL/IMS DXT in Result
1 36.049 35.382 5
2 35.823 36.893 539
3 0.741 4.142 165
4 65.263 99.028 5882
5 46.666 82.687 978
6 1.584 6.087 244
7 0.802 * 91
8 59.763 * 5033

* indicates the query contains syntax and/or
features not supported by DXT.

6. CONCLUSIONS

An SQL interface to IMS, called SQL/IMS, was
developed. Users can submit SQL queries to SQL/IMS
to retrieve IMS data interactively from a TSO
terminal or as a batch job. A testbed was created
on IBM 4381 running MVS/ESA. The performance of
SQL/IMS was analyzed using two IMS databases: a
small test database used to test the prototype
DATAPLEX, and a large production database which is
a part of the Maintenance Management Information
System (MMIS). Fourteen test queries were executed
against the small test database and eight queries
against the large production database.

The performance of SQL/IMS was compared with that
of DXT which is IBM’s SQL to DL/1 translator. The
performance and the functionality of SQL/IMS were
superior to those of DXT. While the performance of
SQL/IMS is satisfactory, it can be further improved
because we have only optimized each step of SQL/IMS
processing. By adding a simple global optimizer,

110

the efficiency of SQL/IMS can be increased
especially for unusual queries.

ACKNOWLEDGEMENT

We acknowledge the contributions of Relational
Technology, Inc. personnel during numerous
discussions about the design of the SQL interface
to IMS. We would also like to thank Jeff Hollar
and Mike McGreevy for their participation in the
development of SQL/IMS.

APPENDIX A

Relational Data Definition and SQL Queries
for the Test Database

(1) An equivalent relational data definition
VEHICLE (VID, CARGROUP, MILEAGE, PRODVOL)
ENGCHA (VID, CHGNUM, CHGDATE, DESIGNER,

DESCRIPT)
COMPONENT (VID, CNUM, CATEGORY, PRODDATE)
ASSEMBLY (VID, CNUM, PNUM, QTY)
PART (PNUM, MTRL, PRICE)
INVENTORY (PNUM, WHNUM, QOH)

(2) SQL queries to the test database

1. select
from vehicle
where mileage > 30

2. select whnum, goh
from inventory
where pnum = 'P44’

3. select
from
where
and

p.pnum, price, whnum, qoh
part p, inventory i
p.pnum = i.pnum

qoh > 10000

1)

4. select e.vid, descript, cnum, proddate

from engcha e, component ¢
where chgdate > ’85-12-31’
and e.vid = c.vid
and category = 'ELECTRICAL’
5. select p.pnum, price, qty
from part p, assembly a
where p.pnum = a.pnum
and vid = 'V20’
and qty > 10
6. select min(price), max(price)
from part
7. select avg(price)
from part
where mtrl = ’ALUMINUM’
8. select sum(qoh)
from inventory
where whnum = W19’
9. select count(cnum)
from component
where proddate > ’84-01-01’
10. select distinct =
from vehicle
order by prodvol
11. select distinct *
from vehicle
order by mileage desc
12. select pnum, price
from part
where price > 100
or price < 10
13. select chgnum, designer, descript
from engcha
where not designer = 'BROWN, A.G.’
14. select chgnum, designer, descript
from engcha
where designer <> ’'BROWN, A.G.’

APPENDIX B

Relational Data Definition and SQL Queries
for the MMIS Database

An equivalent relational data definition.
Since relations contain a large number of

attributes, only the relations and attributes
referenced in queries are listed.

EINV (BINVKEY, PLANTSI1, SYSTEM, EQUIP, COMP,
DESCRIPTOR, PROPERTY, PARTS SET,
ORIG_COST, BOOK VALUE, DRAWING SET)

EVOL (EINVKEY, PRD_DOWNYTD)

ESOC (EINVKEY, START CDATE)

ESMP (EINVKEY, COUNTDUE, RUNDUE, DATEDUE,

TASK, UNITDUE)

()

[1

(3

—

—

]

fans)

ETRK (BINVKEY, DESIGN COST, BUILD COST,
REJECT CODE, GAGE_CODE, DISP, DISP DATE,
NEW)

SQL queries to the MMIS database

1. select plantsil, system, equip, comp

from einv
where parts set <’ ’
and property = ’repair’
2. select plantsil, equip, comp, descriptor,
property
from einv
where system = ’scrap’
3. select disp, design cost, build cost,
reject_code
from etrk
where einvkey <= ’to 0000300’
4. select einvkey, countdue, rundue
from esmp
where datedue = 90365
5. select i.einvkey, equip, gage_code,
disp_date
from einv i, etrk t
where disp_date >= 880301
and new =y’
and disp = ’ac’
and i.einvkey = t.einvkey
6. select i.einvkey, start cdate, task,
unitdue
from einv i, esoc s, esmp p
where i.einvkey <= ’TO 0001331’
and i.einvkey = s.einvkey
and s.einvkey = p.einvkey
7. select plantsil, system, equip, comp,
avg(orig_cost)
from einv
where einvkey >= 'T0 0000010’
and einvkey <= ’TO 0000100’
8. select equip, orig cost - book_value,
prd_downytd
from einv i, evol v
where i.einvkey = v.einvkey
and drawing_set >= ’0015640’
order by 2
REFERENCES

ANSI X3H2-86-141, Database Language SQLZ2,
November 1986.

Chung, C. W., "DATAPLEX: A Heterogeneous
Distributed Database Management System," to
appear in Communications of the ACM.

Chung, C. W., "Design and Implementation of a
Heterogeneous Distributed Databases Management
System," Proc. of the IEEE INFOCOM ’89,

April 1989, pp. 356-362.

Codd, E. F., "A Relational Model of Data for
Large Shared Data Banks," Communications of
the ACM, Vol. 13, June 1970, pp. 377-387.

(7]

(8]

International Business Machines Corporation,
C Language Manual (SC19-1128-0) for IBM ’C’
for 370 (Product offering 5713-AAG), 1986.

International Business Machines Corporation,
Data Extract Version 2.3: General Information
(GC26-4241), May 1988.

International Business Machines Corporation,
IMS/VS 1.3 General Information Manual
(GH20-1260) , March 1984.

IS0/JTC 1/SC 2/WG 3N, Information Systems -

Open Systems - Generic Remote Database Access
Service and Protocol, September 1988.

112

19]

(10]

[11]

Kim, W., "On Optimizing an SQL-Like Nested
Query," ACM TODS, Vol. 7, No. 3,
September 1982, pp. 443-469.

Landers, T. and R. L. Rosenberg, "An Overview
of Multibase," Distributed Databases, North-
Holland, 1982, pp. 153-184.

Zaniolo, C., "Design of Relational Views Over
Network Schemes," Proc. of the ACM SIGMOD
Conference, May 1979, pp. 179-190.

