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Abstract

A statistical performance analysis of
the multiple signal classification (MUSIC)
method is addressed in this paper. It is shown
that the estimation error of the sample MU-
SIC null-spectrum can be decomposed into
the biased and unbiased errors, and the sta-
tistical properties of the two estimation errors
are obtained. We also obtain more exact ex-
pressions of the resolution threshold which is
used to evaluate the resolution capability for
two closely located signal sources.

1 Introduction

The performance study of the sample null-
spectrum, e.g., the MUSIC sample null-
spectrum, has been performed in [1} by simu-
lation. In [2]{3][4] also the statistical proper-
ties of the sample MUSIC null-spectrum have
been analyzed. For example, the first and
second order statistics of the sample MUSIC
null-spectrum are obtained in [2], and a more

exact expression of the second order statistic
is obtained in {3]{4].

In statistical performance analysis the reso-
lution capability of the sample null-spectrum
for the closely-located two signal sources is of
importance, as shown in [2][3]. In this pa-
per we mainly focus on the statistical prop-
erties and resolution capability of the sam-
ple MUSIC null-spectrum: we obtain a more
exact expression for the resolution threshold
(RT) without the assumption that two signal

sources should be closely-located.
2 Signal Model and Assumptions

Let us consider an array of L sensors of uni-
ty gain (unweighted). The array output vec-
tor is denoted by y(t) € CE*!, where CLx!
1s the space of L X 1 complex valued column
vectors. For narrow-band sources, we assume
the standard model of observation:

y(t) = Az(t) +n(t), t=1,2,...,N, (1)

where the column vector z(%) is an M x 1 zero
mean complex random vector of source time
series as observed at the array phase center,
and n(t) is the additive noise vector.

Assumptions on the signal source z(¢) and
the noise n(t) are as follows:

Al. The z(t), t = 1,2,..., are indepen-
dent zero mean circular normal random vec-
tors with positive definite covariance matrix

E[z(t)z¥(t)] = R;.

A2. The n(t), t = 1,2,..., are also inde-
pendent circular normal random vectors with
zero mean and covariance matrix o/.

A3. The two vectors z(t) and n(s) are sta-
tistically independent for any t,s = 1,2,....

In (1) the matrix Aisan Lx M (L > M)
complex matrix having the particular struc-
ture A = [a(0;),a(82),...,a(0r)], where 8; is
the DOA of the ¢-th signal. Here a(6;) € C¥*1
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1s called the steering or transfer vector.

The covariance matrix of y(2) is
R, = AR A" + o1,

where H denotes the Hermitian: that is,

= (A", * and T stand for the complex
conjugate and transpose, respectively.

Let Ay = Ay 2> ... > A denote the or-
dered eigenvalues of R,. Let the normal-
1zed eigenvector corresponding to A; be de-
noted by e;, : = 1,2,..., L, with which we
define two matrices S = [e;,eq,...,ep] and
G = leM+1, EM+2, - - .,er] of sizes L x M and
L x (L — M), respectively. The ranges of the
matrices S and G are called the signal and
noise subspaces, respectively. The MUSIC

null-spectrum f(6) is then defined by
f(8) = a*(8)GG" a(8). (2)

In practice, we can not obtain R, from a
finite observa.tlon of y( ). Thus let us de-
fine R, = % i1 y(1)yT (1) to be the sample
covariance matrix of {y(¢),t = 1,2,...,N},
which 1s an estimate of R,. As we have
done i1n the eigendecomposition of R,, let
{é1,€3,...,€r} denote the normalized eigen-
vectors of R, with the associated eigenval-
ues being arranged in the order of decreas-
ing magnitude. Note that é;, 1 =1,2,...,L,
are random- vectors. In addition let S =
[éla €2, . - - ’ é.’M’] and G = [EM+156M+2*: SRR éL]
be the sample signal and noise subspaces, re-

spectively. The MUSIC sample null-spectrum
f(8) i1s then defined by

£(6) = a"(6)GG"a(9). (3)

3 Results

After a few steps we have the approxima-

tion

£(8) = f(8) + b(6) + v(6), (4)
where b(6) = a¥(§)SSHGGHSSHa(6) and
v(0) = —a¥(0)[GGHSSH + SSHGGH]a(9).

It 1s easy to see that for large N (or asymp-
totically) Equation (4) becomes an identity

f(6) = £(8) + b(6) + v(6). (9)

Lemma 1: a) The normalized error,
2b(6)/o?(8), is asymptotically x? distributed
with degree of freedom 2(L — M), where

3(0) = oI5 T sk Ouf). O

k——l

b) The error v(#) asymptotically has a normal
distribution with zero mean and variance

M

o) = 22 | (0) P (6) Bl
FRe[Y S %(0)21(0)w (6)Visw (0)]), (7)

=1 k=1

where 2;(0) = e{’a(6) and w(f) = GG¥a(6).

Theorem 1 : The asymptotic mean of the
sample null-spectrum is given by

Ef@)] = 0+5 NM ’

{IH ekz
5 STl 0ol (O

Theorem 2: When 8 is between 6, and 8, and
the difference between 8, and 6, is sufficiently

small enough to varfv(8)] ~ 0, we have

var[f( )] (L NQM) [Z HS':F‘GH(G)E | ]

=1
(9)
For M = 2 let us define t; =

a(0;)e;, 1,7 = 1,2, where T' = (i;i i:z)

From the orthogonal projection theorem |[5],
we have t,,; = wyty; + woly;, where wy and
w, are complex valued scalar quantities. In
addition from the quantities ¢;; we can also
obtain the first and second order statistics of
the MUSIC null-spectrum without eigende-
composition {6].
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Denoting the RT [2][3] by ®, we have
min; E[f(0,.) — f(8:;)] = 0 for ASNR = &. If
the ASNR is greater than ®, we can discrim-
inate two signal sources. Conversely, to dis-

criminate two closely-located signal sources
the ASNR should be greater than ®. In [6]

a more exact value of ® is obtained directly
from the array geometry and parameters of
the signal sources.

4 Simulation Result

Let us consider a uniform linear array of
10 sensors (L = 10) with sensor spacing half
the wavelength. When the number of sig-
nal sources M i1s 2 with its DOA’s being 15°
and 20°, some illustrations of the sample null-
spectra and mean null-spectrum are shown in
Fig. 1. In Table 1 the RT’s for various cas-
es are shown, which are obtained based on
our technique. Computer simulations show
that the values of the RT is quite exact. In
the table 1t is seen that the RT is increased
when the correlation of the two signal sources
is increased and/or the difference of the two
DOA’s becomes smaller. In addition when
the ratio of the two signal source powers v is
smaller, the RT is increased.

5 Summary

Based on some approximations we can de-
compose the estimation error of the sample
MUSIC null-spectrum into two errors, the bi-
ased and unbiased errors. We see that the
biased and unbiased estimation errors have
asymptotically x* and normal distributions,
respectively. This result implies that the sam-
ple MUSIC null-spectrum is a biased estimate
of the MUSIC null-spectrum. The mean and
variance of the sample MUSIC null-spectrum
are obtained analytically, and confirmed by
simulation results. It is seen that the asymp-
totic mean and variance for correlated signal
sources are smaller than those for uncorrelat-
ed signal sources. We also obtain more exact
expressions of the resolution threshold which

i1s used to evaluate the resolution capability
for two closely located signal sources.
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corr. coefl. p=0410 -

v= P /P E:l I v =05 v=1 .

RT (ASNR, dB) 42.11 46.42
E[1(6:)] 3.68¢-05 (3.65¢-05)
1.23e.04 (1.25¢-04) | 9.89¢-05 (1.01e-04) | 7.65e-05 (7.81e-05) | 7.36e-05 (7.53¢-05)
E[}I(Bm )T 9.84&-0‘;[9.89&-05) 7.65e-05 (7.74e-05) 7.33e-05 (7.36e-05)
2.47e-11 (4.92¢-07) | 4.92¢-05 (4.91e-05) 3.65¢-05 (3.71e-05)
2.47¢-11 (-1.09¢-06) | -4.08¢-07 (-2.34e-06) | 9.27e-13 (-7.45¢-07) | -3.51e-07 (-1.71¢-06)

Table 1. The resolution threshold when two DOA’s are 15° and 18° and the mean and
variance of the sample null-spectrum at the resolution threshold (* the values in paran-
theses are obtained by computer simulation with 100 trials and those without parantheses
are theoretical values).
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Figure 1. Inverse of the sample null-spectra and mean null-spectrum.
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