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Abstract- When evolutionary algorithms are used for
solving numerical constrained optimization problems,
how to deal with the relationship between feasible and
infeasible individuals can directly influence the final re-
sults. This paper proposes a novel ecology-inspired EA
to balance the relationship between feasible and infea-
sible individuals. According to the feasibility of the
individuals, the population is divided into two groups,
feasible group and infeasible group. The evaluation
and ranking of these two groups are performed sep-
arately. The number of parents from feasible group
has a sigmoid relation with the number of feasible indi-
viduals, which is inspired by the ecological population
growth in a confined space. The proposed method is
tested using (µ, λ) evolution strategies with 13 bench-
mark problems. Experimental results show that the pro-
posed method is capable of improving performance of
the dynamic penalty method for constrained optimiza-
tion problems.

1 Introduction

The general constrained optimization problem (P ) is to find
~x so as to

min
~x

f(~x), ~x = (x1, . . . xn) ∈ Rn (1)

where~x ∈ F ⊆ S. Theobjective function fis defined on
the search spaceS ⊆ Rn and the setF ⊆ S defines the
feasible region. Usually, the search spaceS is defined as
ann-dimensional rectangle inRn (domains of variables de-
fined by their lower and upper bounds):

l(j) ≤ xj ≤ u(j), j = 1, . . . , n (2)

where the feasible regionF ⊆ S is defined by a set ofm
additional constraints (m ≥ 0):

gk(~x) ≤ 0, k = 1, . . . , l, (3)

hk(~x) = 0, k = l + 1, . . . , m. (4)

Any point~x ⊆ F is called a feasible solution, otherwise,~x
is an infeasible solution.

When evolutionary algorithms are adopted to solve con-
strained optimization problems, intuitively, feasible indi-
viduals could be thought to have better fitness values than
infeasible individuals (here “better” means to have more
chance to survive and reproduce). Since all constrains of
feasible individuals have already been satisfied, the only
aim left is to find~x minimizef(~x). Most of the existing evo-
lutionary algorithms for constrained optimization problems
follow such an idea and, more or less, underrated the im-
portance of the infeasible individuals. For example, nearly
all of the penalty methods add some “penalties” to the fit-
ness functions of the infeasible individuals, and then rank
the infeasible individuals with feasible individuals together
[1], [2], [3]. Some other methods [4] directly assume that
feasible individuals are always fitter than infeasible ones.

However, this kind of view ignores one important thing
that evolutionary algorithm is a probabilistic and recurrent
method. It is possible that some of the infeasible individu-
als carry more useful information than feasible individuals
during evolution process. Moreover, quite often the system
can reach the optimal point more easily if it is possible to
“cross” an infeasible region (especially in non-convex fea-
sible search space).

There have been some work on adjusting the relationship
between feasible and infeasible individuals. In [5], [6], fea-
sible and infeasible individuals were evaluated with differ-
ent criteria. Other method like GENOCOP III [7] repaired
the infeasible individuals for evaluation. However, for each
particular problem, a specific repair strategy needs to be de-
signed.

In this paper, based on the idea of fully utilizing the use-
ful information of infeasible individuals, a novel evolution-
ary algorithm using feasibility-based grouping (EAFG) is
proposed for constrained optimization problems. In each
generation, according to the feasibility of the individuals,
the whole population is divided into two groups: feasible
group and infeasible group. Evaluation and ranking of these
two groups are performed in parallel and separately. The
best individuals from feasible and infeasible groups are se-
lected together as parents. The number of feasible parents
has a sigmoid-type relation with that of feasible individu-
als, which is inspired by the natural ecological population
growth in a confined space.



Any existing evolutionary algorithms for constrained op-
timization problems, which evaluate and rank feasible and
infeasible individuals together, can be incorporated into
EA FG to improve the performance. In this paper, a dy-
namic penalty method is incorporated into EAFG to test
the effectiveness of EAFG. The initial study on the EAFG
can be found in [8], [9], [10].

This paper is organized as follows. Section II presents
a detailed description of the overall structure of EAFG.
Also, an ecology-inspired parent selection mechanism is
discussed. In Section III, experimental results on 13 bench-
mark problems are presented and compared with a dynamic
penalty method. Finally, Section IV concludes with some
remarks.

2 EA FG for Constrained Optimization

2.1 Overall Structure of EA FG

Fig. 1 shows the flowchart of EAFG. In the beginning
of every generation, the whole population is divided into
two groups: feasible group and infeasible group according
to the feasibility of every individual. Then, the evaluation
and ranking of these two groups are performed in parallel
and separately. In order to share information of these two
groups, the best feasible and infeasible individuals are se-
lected as parent population. Parent population reproduces
and generates offspring population. The offspring popu-
lation is to be divided into feasible and infeasible groups
again. The iteration keeps on working until the termination
condition is satisfied.

When EAFG is used to solve constrained optimization
problems, two aspects should be noted. The first one is how
to perform evaluation and ranking of infeasible groups. The
second one is how to select parents from feasible and infea-
sible groups, in another words, how to decide the number of
feasible parents and the number of infeasible parents. For
the first aspect, any existing evaluation and ranking method
for the whole population, can be adopted to evaluate and
rank the infeasible group. In this paper, the dynamic penalty
method [1] will be tried. For the second aspect, a novel
method inspired by the natural population growth in a con-
fined space will be used.

2.2 Ecological-inspired Parent Selection

In nature, the growth of a simple population in a confined
space, where resources are not unlimited, is simply de-
scribed by a graph that always looks sigmoid (Fig. 2(a))
[11]. In the early stage, resources are abundant, the death
rate is minimal and the reproduction can take place as fast
as possible. The population increases geometrically until an
upper limit is approached. This upper limit, or saturation
value is a constant for a particular set of conditions in a par-
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Figure 1: Flow chart of EAFG
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Figure 2: (a) Sigmoid population growth curve; (b) ob-
served paramecium population growth.

ticular habitat and is called the carrying capacity (k). The
population growth rate declines to zero as the population
becomes more crowded and the population size stabilizes
at the maximum that the environment can support, reach-
ing an equilibrium population density. Fig. 2(b) shows one
observed example: paramecium population growth.

Inspired by this phenomenon, a novel parent selection
strategy is generated for EAFG. The number of feasible
parents which are selected from the feasible group and the
number of feasible individuals will follow a sigmoid rela-
tion as follows:

i) numFeaPar = ceil(sig(numFeaInd)), (5)

If numFeaPar > numPar, numFeaPar = numPar.
(6)

ii) numInfeaPar = numPar − numFeaPar. (7)

where numFeaPar represents ‘number of feasible par-
ents,’ numFeaInd ‘number of feasible individuals,’
numPar ‘number of parents,’numInfeaPar ‘number of
infeasible parents.’ sig(x) denotes a sigmoid-type equation,
ceil(x) rounds the elements ofx to the nearest integers to-
wards infinity. Note that (6) restrictsnumFeaPar not to
exceed the predefined number of parents (numPar). Once
numbers of feasible and infeasible parents are decided, the
corresponding numbers of best individuals are selected from
the feasible and infeasible groups, respectively, according to
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Figure 3: The sigmoid-type relation between the number
of feasible parents (numFeaPar) and the number of feasible
individuals (numFeaInd) of EAFG with (30, 200)-ES.

their ranking.
To explain this strategy more clearly, assume that (30,

200)-ES is used for computation. Fig. 3 shows an exam-
ple of the sigmoid relation between the number of feasible
parents and the number of feasible individuals. (5) can be
calculated by the following equation:

numFeaPar = ceil(
30

1 + 30 ∗ exp(−0.05 ∗ numFeaInd)
),

(8)
where30 is the limit of numFeaPar, and−0.05 is set
to make the curve similar to a natural population growth
curve like Fig. 2(b). IfnumFeaInd = 20, (8) gives
numFeaPar = 3. And by (7),numInfeaPar = 30 −
3 = 27. Therefore, the best 3 individuals are selected from
the feasible group and best 27 individuals from the infeasi-
ble group, thus to form 30 parents for reproduction. Also,
if numFeaInd = 180, (8) givesnumFeaPar = 30. And
by (7),numInfeaPar = 30− 30 = 0. In this case, all 30
parents are from the feasible group.

3 Experimental Studies

Since EAFG is an open structure algorithm, any evolution-
ary algorithm for numerical constrained optimization prob-
lems can be employed for the infeasible group. In this sec-
tion, a dynamic penalty method was adopted to rank and
evaluate the infeasible group of EAFG, which would be
called ‘EA FG D’ in the later part of this paper. EAFG D
was tested and the results were compared with those of the
dynamic penalty method in [12] on 13 benchmark func-
tions. The details of these functions are listed in Appendix.
ProblemsG2, G3, G8 andG12 are maximization problems.
They were transformed into minimization problems using
−f(~x). ProblemsG3, G5, G11 andG13 include one or
several equality constraints. All of these equality constraints
were converted into inequality constraints,|h(~x)| − δ ≤ 0,
using the degree of violationδ = 0.0001.



Table 1: Experimental Dynamic Penalty Method; “-” Means no Feasible Solutions Were Found, Data are From [12].
Function optimal best median worst mean st. dev. gm

G1 −15.000 −15.000 −15.000 −15.000 −15.000 7.9E − 005 217
G2 −0.803619 −0.803587 −0.785907 −0.751624 −0.784868 1.5E − 002 1235
G3 −1.000 −0.583 −0.045 −0.001 −0.103 1.4E − 001 996
G4 −30665.539 −30365.488 −30060.607 −29871.442 −30072.458 1.2E + 002 4
G5 5126.498 − − − − − −
G6 −6961.814 −6911.247 −6547.354 −5868.028 −6540.012 2.6E + 002 13
G7 24.306 24.309 24.375 25.534 24.421 2.2E − 001 180
G8 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 2.8E − 017 421
G9 680.630 680.632 680.648 680.775 680.659 3.2E − 002 1739
G10 7049.331 − − − − − −
G11 0.750 0.750 0.750 0.750 0.750 9.1E − 006 61
G12 −1.000000 −1.000000 −0.999818 −0.999573 −0.999838 1.3E − 004 68
G13 0.053950 0.514152 0.996674 0.998156 0.965397 9.4E − 002 1750

A (µ, λ)-ES was employed for recombination and mu-
tation. For impartial comparison, all parameters of the ES
used here were the same as those of [12]. For each of the
benchmark problems, 30 independent runs were performed
using(30, 200)-ES. The termination condition was set to be
1,750 generations. The initial population of~x was generated
according to a uniformn-dimensional probability distribu-
tion over the search spaceS. The ecology-inspired parent
selection in Fig. 3 was adopted.

Table 1 and Table 2 show the simulation results with a
dynamic penalty method and EAFG D, respectively. The
median number of generations for finding the best solution
in each run is indicated bygm in the tables. The tables also
show the known ‘optimal’ solution for each problem and
statistics for the 30 independent runs. Best, median, worst
and mean values of 30 runs were used as performance crite-
ria. 13 problems totally have13 × 4 = 52 criteria. Among
the52 criteria,

• EA FG D performed better on 27 criteria,

• EA FG D performed worse on 6 criteria, and

• EA FG D performed the same on 19 criteria.

For problemsG1, G8 andG11, both algorithms performed
well and found the optimal solutions for all 30 runs. For
problemG10, both algorithms failed to find the optimal so-
lution. For problemG2, EA FG D provided ‘similar’ re-
sults to the dynamic penalty method. It performed better on
worstandmean, but worse onbestandmedianthan the dy-
namic penalty method. For the rest of problems, EAFG D
outperformed the dynamic penalty method except problem
G13. For problemG3, bestof the dynamic penalty method
was−0.583, while bestof EA FG D could reach the opti-
mal value−1.000. For problemsG4, G6 andG9, EA FG D
performed significantly better in terms of all four criteria. It
should be noted that for problemG5, EA FG D could find
a feasible solution 3 times out of 30 runs, while the dynamic
penalty method failed to find the solution.

4 Conclusion

This paper proposed a new constraint handling technique:
ecology-inspired evolutionary algorithm using feasibility-
based grouping. This method divides the population into
two groups, feasible group and infeasible group according
to the feasibility of the individuals. The evaluation and
ranking of these two groups are performed in parallel and
separately. The number of feasible parents has a sigmoid-
type relation with that of feasible individuals which is in-
spired by the ecological population growth in a confined
space in nature. In addition, a dynamic penalty method
was modified and included into EAFG D to evaluate and
rank the infeasible group. EAFG D was tested on a set
of 13 benchmark problems. Experimental results showed
EA FG D could improve the performance of the dynamic
penalty method on most problems.
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A Test Function Suite

ProblemG1 : Minimize

f(~x) = 5

4∑
j=1

xj − 5

4∑
j=1

x2
j −

13∑
j=5

xj ,

subject to

g1(~x) = 2x1 + 2x2 + x10 + x11 − 10 ≤ 0,
g2(~x) = 2x1 + 2x3 + x10 + x12 − 10 ≤ 0,
g3(~x) = 2x2 + 2x3 + x11 + x12 − 10 ≤ 0,
g4(~x) = −8x1 + x10 ≤ 0,
g5(~x) = −8x2 + x11 ≤ 0,
g6(~x) = −8x3 + x12 ≤ 0,
g7(~x) = −2x4 − x5 + x10 ≤ 0,
g8(~x) = −2x6 − x7 + x11 ≤ 0,
g9(~x) = −2x8 − x9 + x12 ≤ 0,

and bounds

0 ≤ xj ≤ 1 (j = 1, . . . , 9),
0 ≤ xj ≤ 100 (j = 10, 11, 12), 0 ≤ x13 ≤ 1.

The global minimum is at~x∗=(1, 1, 1, 1,1,1, 1, 1, 1, 3,
3, 3, 1), andf(~x∗) = −15.

ProblemG2 : Maximize

f(~x) =

∣∣∣∣∣∣

∑n
j=1 cos4(xj)− 2

∏n
j=1 cos2(xj)√∑n

j=1 jx2
j

∣∣∣∣∣∣
,



subject to

g1(~x) = 0.75−
n∏

j=1

xj ≤ 0,

g2(~x) =

n∑
j=1

xj − 7.5n ≤ 0,

and bounds
0 ≤ xj ≤ 10 (j = 1, . . . , n),

wheren = 20. The global maximum is unknown; the known
solution isf(~x∗) = 0.803619.

ProblemG3 : Maximize

f(~x) = (
√

n)n
n∏

j=1

xj ,

subject to

h1(~x) =

n∑
j=1

x2
j − 1 = 0,

and bounds
0 ≤ xj ≤ 1 (j = 1, . . . , n),

where n = 10. The global minimum is atx∗j = 1/
√

n
(j = 1, . . . , n), andf(~x∗) = 1.

ProblemG4 : Minimize

f(~x) =5.3578547x2
3 + 0.8356891x1x5 + 37.293239x1

− 40792.141,

subject to

g1(~x) =85.334407 + 0.0056858x2x5 + 0.0006262x1x4

− 0.0022053x3x5 − 92 ≤ 0,
g2(~x) =− 85.334407− 0.0056858x2x5 − 0.0006262x1x4

+ 0.0022053x3x5 ≤ 0,
g3(~x) =80.51249 + 0.0071317x2x5 + 0.0029955x1x2

+ 0.0021813x2
3 − 110 ≤ 0,

g4(~x) =− 80.51249− 0.0071317x2x5 − 0.0029955x1x2

− 0.0021813x2
3 + 90 ≤ 0,

g5(~x) =9.300961 + 0.0047026x3x5 + 0.0012547x1x3

+ 0.0019085x3x4 − 25 ≤ 0,
g6(~x) =− 9.300961− 0.0047026x3x5 − 0.0012547x1x3

− 0.0019085x3x4 + 20 ≤ 0,

and bounds

78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xj ≤ 45, (j = 3, 4, 5).

The optimal solution is at~x∗=(78, 33, 29.995256025682, 45,
36.775812905788), andf(~x∗) = −30665.539.

ProblemG5 : Minimize

f(~x) = 3x1 + 0.000001x3
1 + 2x2 + (0.000002/3)x3

2,

subject to

g1(~x) = −x4 + x3 − 0.55 ≤ 0,
g2(~x) = −x3 + x4 − 0.55 ≤ 0,
h1(~x) =1000 sin(−x3 − 0.25) + 1000 sin(−x4 − 0.25)

+ 894.8− x1 = 0,
h2(~x) =1000 sin(x3 − 0.25) + 1000 sin(x3 − x4 − 0.25)

+ 894.8− x2 = 0,
h3(~x) =1000 sin(x4 − 0.25) + 1000 sin(x4 − x3 − 0.25)

+ 1294.8 = 0,

and bounds

0 ≤ x1 ≤ 1200, 0 ≤ x2 ≤ 1200,
−0.55 ≤ x3 ≤ 0.55,−0.55 ≤ x4 ≤ 0.55.

The best know solution is at~x∗=(679.9453, 1026.067,
0.1188764,−0.3962336), andf(~x∗) = 5126.4981.

ProblemG6 : Minimize

f(~x) = (x1 − 10)3 + (x2 − 20)3,

subject to

g1(~x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,
g2(~x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0,

and bounds
13 ≤ x1 ≤ 100, 0 ≤ x2 ≤ 100.

The known global solution is~x∗ = (14.095, 0.84296), and
f(~x∗) = −6961.81388.

ProblemG7 : Minimize

f(~x) =x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2+

4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7+

7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45,

subject to

g1(~x) = −105 + 4x1 + 5x2 − 3x7 + 9x8 ≤ 0,
g2(~x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0,
g3(~x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0,
g4(~x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2

3 − 7x4 − 120 ≤ 0,
g5(~x) = 5x2

1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0,
g6(~x) = x2

1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0,
g7(~x) = 0.5(x1 − 8)2 + 2(x2 − 4)2 + 3x2

5 − x6 − 30 ≤ 0,
g8(~x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0,

and bounds

−10 ≤ xj ≤ 10 (j = 1, . . . , 10).

The optimal solution is at~x∗=(2.171996, 2.363683,
8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927), andf(~x∗) = 24.3062091.

ProblemG8 : Maximize

f(~x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

,



subject to

g1(~x) = x2
1 − x2 + 1 ≤ 0,

g2(~x) = 1− x1 + (x2 − 4)2 ≤ 0,

and bounds

−10 ≤ x1 ≤ 10,−10 ≤ x2 ≤ 10, .

The optimal solution is at~x∗ = (1.2279713, 4.2453733),
andf(~x∗) = 0.095825.

ProblemG9 : Minimize

f(~x) =(x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7,

subject to

g1(~x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0,

g2(~x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0,

g3(~x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0,
g4(~x) = 4x2

1 + x2
2 − 3x1x2 + 2x2

3 + 5x6 − 11x7 ≤ 0,

and bounds
−10 ≤ xj ≤ 10 (j = 1, . . . , 7).

The known global solution is at~x∗= (2.330499,1.951372,
−0.4775414,4.365726,−0.6244870, 1.038131,1.594227),
andf(~x∗) = 680.6300573.

ProblemG10 : Minimize

f(~x) = x1 + x2 + x3,

subject to

g1(~x) = −1 + 0.0025(x4 + x6) ≤ 0,
g2(~x) = −1 + 0.0025(x5 + x7 − x4) ≤ 0,
g3(~x) = −1 + 0.01(x8 − x5) ≤ 0,
g4(~x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0,
g5(~x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0,
g6(~x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0,

and bounds

100 ≤ x1 ≤ 10000, 1000 ≤ xj ≤ 10000 (j = 2, 3),

10 ≤ xj ≤ 1000 (j = 4, . . . , 8).

The optimal solution is at~x∗=(579.3167, 1359.943,
5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979),
andf(~x∗) = 7049.3307.

ProblemG11 : Minimize

f(~x) = x2
1 + (x2 − 1)2,

subject to
h1(~x) = x2 − x2

1 = 0,

and bounds

−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1.

The optimal solution is at~x∗ = (±1/
√

2, 1/
√

2), and
f(~x∗) = 0.75.

ProblemG12 : Maximize

f(~x) = (100− (x1 − 5)2 − (x2 − 5)2 − (x3 − 5)2)/100,

subject to

g(~x) = (x1 − p)2 + (x2 − q)2 + (x3 − r)2 − 0.0625 ≤ 0,

and bounds

0 ≤ xj ≤ 10 (j = 1, 2, 3),

wherep, q, r = 1, 2, . . . , 9. The feasible region of the search
space consists of93 disjointed spheres. A point(x1, x2, x3)
is feasible if and only if there existsp, q, r such that the above
inequality holds. The optimal solution is at~x∗ = (5, 5, 5), and
f(~x∗) = 1.

ProblemG13 : Minimize

f(~x) = ex1x2x3x4x5 ,

subject to

h1(~x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 − 10 = 0,

h2(~x) = x2x3 − 5x4x5 = 0,
h3(~x) = x3

1 + x3
2 + 1 = 0,

and bounds

−2.3 ≤ xj ≤ 2.3 (j = 1, 2),−3.2 ≤ xj ≤ 3.2 (j = 3, 4, 5).

The optimal solution is at~x∗=(−1.717143, 1.595709,
1.827247,−0.7636413,−0.763645), andf(~x∗) = 0.0539498.


